Comparative Analysis of Background versus Risk-based Cleanup Scenarios for the Soils at Santa Susana Field Laboratory, Ventura County, California

> National Aeronautics and Space Administration George C. Marshall Space Flight Center

> > March 2014

This page intentionally left blank.

Contents

Sectio	n			Page
Acrony	yms and	l Abbrevi	ations	v
1	Introd	uction		1-1
	1.1	Purpos	e and Scope	1-1
	1.2	Site Ba	ckground	1-1
	1.3	Cleanu	p Requirements and Approach	1-2
	1.4	Traditio	onal Risk Assessment and Risk Management Framework	1-3
2	Comp	arative A	nalysis of Cleanup Scenarios Based on Human Health Risk Evaluation	2-1
	2.1	Evaluat	ion of Human Health Risks Associated with the Background Cleanup Scenario	2-1
		2.1.1	Methods and Assumptions	2-1
		2.1.2	Background Cleanup Scenario Results	2-2
		2.1.3	Comparing Background and Risk-based Cleanup Levels	2-3
		2.1.4	Discussion	2-3
	2.2	-	rison of Background and Risk-based Cleanup Scenarios for Site-specific Chemicals of	
			n	
		2.2.1	Selection of Site-specific Contaminants of Concern	
		2.2.2	Risk-based Cleanup Scenario Risk Estimates	
		2.2.3	Background Cleanup Scenario Risk Estimates	
		2.2.4	Discussion	2-4
3	Comp	arative A	nalysis of Cleanup Scenarios based on Ecological Risk Evaluation	3-1
	3.1	Evaluat	ion of Ecological Risk Associated with the Background Cleanup Scenario	3-1
		3.1.1	Methods and Assumptions	
		3.1.2	Background Cleanup Scenario Results	3-1
		3.1.3	Comparing Background and Risk-based Cleanup Levels	3-2
	3.2	•	rison of Background and Risk-based Cleanup Scenarios for Site-specific Chemicals	
		of Ecolo	ogical Concern	3-2
		3.2.1	Selection of Site-specific Contaminants of Ecological Concern	
		3.2.2	Risk-based Cleanup Scenario Risk Estimates	3-3
		3.2.3	Background Cleanup Scenario Risk Estimates	
	3.3	Discuss	ion	3-3
4	Spatia	l Evaluat	ion of Excavation Boundaries under Background versus Risk-Based Cleanup	
	Scena	rios		4-1
5	Conclu	usions		5-1
6	Refere	ences		6-1

Tables

- 1-1 Look-up Table Values for Analytes Requiring Cleanup Under the Background Cleanup Scenario
- 2-1 Human Health Risk-based Screening Levels
- 2-2 Cancer Risk and Noncancer Hazard Estimates for Background Closure Scenario based on Look-up Table Values
- 2-3 Comparison of the Human Health Protectiveness of the Risk-based Cleanup Levels to the Background Cleanup Levels
- 2-4 Chemicals of Concern Summary for Average Soil (0 to 10 feet bgs) Concentrations Risk-based Cleanup Scenario
- 2-5 Risk Summary for Soil COCs Background Cleanup Scenario vs Risk-based Cleanup Scenario
- 3-1 Ecological Risk-based Screening Levels
- 3-2 Ecological Hazard Quotients for Background Closure Scenario based on Look-up Table Values
- 3-3 Comparison of the Ecological Protectiveness of the Risk-based Cleanup Levels to the Background Cleanup Levels
- 3-4 Ecological Risk Evaluation and Chemical of Ecological Concern Identification for Soils from 0- 6 feet bgs -Risk-Based Cleanup Scenario
- 3-5 Risk Summary for Ecological Soil COCs Background Cleanup Scenario vs Risk-based Cleanup Scenario

Figures

- 4-1 Estimated Excavation Boundaries Under Background Cleanup
- 4-2 Estimated Excavation Boundaries Under Risk-Based Cleanup

Acronyms and Abbreviations

95 UCL 95 USL	95-percent upper confidence limit 95-percent upper simultaneous limit
AOC	Administrative Order of Consent
BaP	benzo(a)pyrene
bgs	below ground surface
Boeing	The Boeing Company
BTV	background threshold value
Cal/EPA	California Environmental Protection Agency
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
COC	contaminant of concern
COEC	contaminant of ecological concern
COPC	contaminant of potential concern
DTSC EIS	Department of Toxic Substances Control
EPA	Environmental Impact Statement
EPA	U.S. Environmental Protection Agency
ERA	exposure point concentration ecological risk assessment
ft	feet
HHRA	human health risk assessment
HI	hazard index
HQ	hazard quotient
ID	identification
LUT	Look-up Table
MCPA	2-methyl-4-chlorophenoxyacetic acid
MRL	method reporting limit
NASA	National Aeronautics and Space Administration
RBSL	residential soil risk-based screening level
RI	Remedial Investigation
RME	reasonable maximum exposure
SAIC	Science Applications International Corporation
SRAM	Standardized Risk Assessment Methodology
SSFL	Santa Susana Field Laboratory
TCDD	tetrachlorodibenzo-p-dioxin
TEQ	toxicity equivalent
USAF	U.S. Air Force

This page intentionally left blank.

section 1 Introduction

During the National Aeronautics and Space Administration's (NASA's) development of an Environmental Impact Statement (EIS) for Santa Susana Field Laboratory (SSFL), NASA received many public questions about the benefits of a soil cleanup as prescribed by the 2010 Administrative Order on Consent (2010 AOC). This paper is written in an effort to address those concerns and questions and to assess the difference in cleanup requirements based on the background cleanup scenario versus a risk-based cleanup scenario. The analysis is intended to compare the level of protectiveness of cleaning up soil to background, as required by the 2010 AOC, versus cleaning up only those chemicals that pose unacceptable risk to human or ecological receptors (referred to as a risk-based cleanup).

1.1 Purpose and Scope

The 2010 AOC between NASA and the California Department of Toxic Substances Control (DTSC) requires remediation of the soils on the NASA-administered property at SSFL by 2017. The soils on the NASA-administered property of SSFL will be remediated to local background values; when background values are not available, the soils will be remediated to laboratory method reporting limits (MRLs).

Cleanup decisions for the NASA-administered portions of this property are not risk-based, and the 2010 AOC requires that the site be cleaned up to background conditions, regardless of whether site contaminants are predicted to pose a risk to human health or the environment. Consequently, the cleanup effort is conservative, will affect a large area of habitat, and will be economically costly.

The objective of this paper is to evaluate the differences in general cleanup requirements between a background cleanup scenario versus a risk-based cleanup scenario typically conducted under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process. To support this effort, human health and ecological risk evaluations were conducted using recently acquired field data for the sites within Groups 2, 3, 4, and 9 to identify chemicals that might pose a potential risk on a sitewide basis and potentially require cleanup. Using the results of the risk evaluations, an assessment of the differential risk between the background scenario and a risk-based cleanup scenario was presented.

It should be noted that the risk evaluations conducted as part of this effort were intended to support this comparative evaluation only and are not intended to support cleanup decisions for an individual NASA-administered site. This effort is intended to address outstanding public comments regarding the need for a comparative evaluation.

1.2 Site Background

SSFL is at approximately 1,100 feet (ft) of elevation and located 29 miles northwest of downtown Los Angeles, California, in the southeastern corner of Ventura County. SSFL, which occupies approximately 2,850 acres of hilly terrain, with approximately 1,100 ft of topographic relief near the crest of the Simi Hills, is owned in part by The Boeing Company (Boeing) and in part by the U.S. Government. The land management is designated by administrative areas. NASA administers part of Area I (the former Liquid Oxygen Plant Area) and all of Area II (approximately 450 acres). Boeing owns the remainder of the SSFL property. The study area or region of influence analyzed in the EIS (NASA, 2013) is primarily the NASA-administered property in Areas I and II at SSFL.

Contamination is known to exist on NASA-administered SSFL property from previous mission activities, and NASA has declared the property excess to its mission needs. Therefore, the cleanup is required to meet the requirements of the 2010 AOC and the completion date of 2017, to reduce ongoing maintenance costs, and to prepare the property for disposition.

Since 1948, research, development, and testing of liquid-fueled rocket engines and associated components (such as pumps and valves) were the primary site activities at SSFL (Science Applications International Corporation

[SAIC], 1994). The vast majority of rocket engine testing and ancillary support operations occurred from the 1950s through the early 1970s. Rocketdyne (the predecessor to Boeing) conducted these operations in Areas I and III in support of various government space programs and in Area II on behalf of the U.S. Air Force (USAF) and then of NASA. NASA gradually discontinued test activities beginning in the 1980s and conducted its final tests in 2006. Boeing has maintained the NASA portion of SSFL since 1996.

Engine testing at SSFL primarily used petroleum-based compounds as the "fuel" and liquid oxygen as the "oxidizer." Trichloroethene was the primary solvent used for cleaning rocket engine components and for other cleaning purposes.

Before its use as a rocket engine testing facility, the land at SSFL was used for ranching and grazing. North American Aviation (a predecessor to Boeing) began using (by lease) what is now known as the northeastern portion of Area I during 1947 and 1948. The undeveloped portions of SSFL are located on the northern and southern portions; no site-related operations were conducted in these undeveloped areas. The areas are owned and operated as follows (SAIC, 1994):

- Area I (U.S. Environmental Protection Agency [EPA] identification (ID) number CAD 093365435) consists of 713 acres in the northeastern portion of the site. Boeing owns 671 acres and the remaining 42 acres are administered by NASA. Boeing has been operating the entire Area I, including the NASA portion. The 42-acre NASA-administered property in Area I formerly was administered by the USAF.
- Area II (EPA ID number CA 1800090010) consists of 410 acres in the north-central portion of the site. Area II is administered by NASA and has been operated by Boeing.
- Area III (EPA ID number CAD 093365435) consists of 114 acres in the northwestern portion of the site and is owned and operated by Boeing.
- Area IV (EPA ID number CAD 000629972 and CA 3890090001) consists of 290 acres in the extreme northwestern section of the site, and is owned and operated by Boeing. A portion of Area IV (consisting of 90 acres that house the Energy Technology Engineering Center) was leased to the U.S. Department of Energy and operated by Boeing.
- Southern Undeveloped Area in the southern portion of the site is an undeveloped, open space area that
 consists of approximately 1,200 acres along the southern boundary of the site. This naturally vegetated area is
 owned by Boeing. Industrial activities have never been conducted in this area. Northern Undeveloped Area in
 the northern portion of SSFL, adjacent to Areas II, III, and IV, is an undeveloped open space area consisting of
 about 180 acres. This naturally vegetated area has not been used for industrial activity. It is owned by Boeing.

1.3 Cleanup Requirements and Approach

The 2010 AOC requires cleanup of soils on the NASA-administered portions of SSFL by 2017. It also requires that soils on the NASA-administered portions of SSFL be remediated to local background concentrations known as background threshold values (DTSC, 2013a), or when background values are not available, to agreed-upon laboratory MRLs. These cleanup requirements (AOC Lookup Table [LUT] values) are not based on risks to human health or the environment.

The LUT values are from the *Chemical Look-Up Table Technical Memorandum* (DTSC, 2013a). DTSC developed LUT values for more than 130 chemicals based on a chemical background study of the combined Chatsworth or Santa Susana geologic formations, as well as those chemicals most frequently identified as contaminants at SSFL or of interest to DTSC (DTSC, 2012; DTSC, 2013a). The LUT values are based on either the background threshold values (BTVs) derived from the background study or an MRL for chemicals without a BTV. The MRL is the minimum level that an analytical instrument can report and provide a reliable (accurate and precise) result. All measurements have some level of uncertainty. The act of collecting samples and processing them for analysis has a level of uncertainty. In addition, there is uncertainty associated with the analytical methods used for chemical analysis. For an acceptable decision error rate, the EPA technical memorandum provided guidance that background threshold values should account for method uncertainty, so the LUT values would be the BTV, or MRL as

appropriate, with method uncertainty added. Therefore, the chemical LUT values are calculated by summing the cleanup level (BTV or MRL) plus uncertainty.

For more information about DTSC's statistical evaluation, refer to DTSC's *Statistical Methods for Application in the Chemical Soil Background Study for the Modified Site Evaluation Approach of AOCs (DOE and NASA) and for Risk Assessment-Based Approach (Boeing), Santa Susana Field Laboratory, Ventura County, California* (2013b).

For additional information regarding the LUT values, refer to DTSC's *Chemical Look-Up Table Technical Memorandum, Santa Susana Field Laboratory, Ventura County, California* (2013a).

Table 1-1 lists the chemicals requiring cleanup under the 2010 AOC background scenario, as well as the LUT values that serve as the preliminary cleanup values for this scenario (all tables are located at the end of the document). A total of 59 chemicals are presented Table 1-1. These chemicals were identified as requiring cleanup under the background scenario based on agreements between NASA and DTSC. These 59 chemicals are considered chemicals of potential concern (COPCs) for purposes of this white paper. The list includes contaminants detected across SSFL and includes contaminants that either exceeded background values or, for those chemicals lacking background values, exceeded laboratory MRLs. The chemicals and their associated LUT values are subject to change and are current as of June 2013.

1.4 Traditional Risk Assessment and Risk Management Framework

Human health risk assessments (HHRAs) and ecological risk assessments (ERAs) often are conducted as part of the CERCLA process to evaluate whether hazardous chemicals in environmental media might have harmed or have a potential to harm exposed ecological or human receptors. The overall objective of a CERCLA risk assessment is to provide risk-based information to environmental restoration project managers for remedial decision making (deciding whether or not cleanup of a site might be needed because of potential threats to human or ecological receptors).

HHRAs identify those contaminants of concern (COCs) that pose potential risk to human receptors and might require additional action or evaluation. EPA uses the 1×10^{-6} to 1×10^{-4} risk range as a "target range" within which EPA strives to manage risks as part of a Superfund cleanup. Exposure areas that have excess lifetime cancer risk estimates less than 1×10^{-6} are characterized as not posing a threat to human health for the evaluated exposed populations and pathways. Cancer risk estimates within the risk range (1×10^{-6} to 1×10^{-4}) could warrant a risk management decision that includes evaluating site-specific characteristics and exposure scenario factors to assess whether further action (such as cleanup or mitigation) is warranted (EPA, 1991). In cases where the cumulative cancer risk estimate to an individual based on the reasonable maximum exposure (RME) is less than 1×10^{-4} and the noncarcinogenic hazard quotient (HQ) is less than 1, action generally is not warranted (EPA, 1991). Exposure areas that have hazard indexes (HIs)-the sum of the HQs for individual chemicals in the exposure area-less than 1 are characterized as not posing a threat to human health for the evaluated exposed populations and pathways. An HI of greater than 1 indicates that there is some potential for adverse noncancer health effects associated with exposure to the COCs (EPA, 1991).

ERAs identify those contaminants of ecological concern (COECs) that pose potential risk to the ecological receptors and might require additional action or evaluation. ERAs often contain detailed information regarding the contact or co-occurrence of stressors (or agents) with the biological community at a site. Exposure profiles are developed to identify ecological receptors (tissues, organisms, populations, communities, and ecosystems), habitats, and pathways of exposure. The sources and distributions of stressors in the environment also are characterized. Other information contained in ERAs might include evaluations of individual species, populations of species, general trophic levels, communities, habitat types, ecosystems, or landscapes (EPA, 2013). A risk does not exist unless an exposure has the ability to cause one or more adverse effects, and that exposure co-occurs with or contacts an ecological component long enough and at a sufficient intensity to elicit the identified adverse effect.

The main differences between traditional risk assessment and the risk evaluations conducted as part of this effort are the spatial area and the summary statistics used to evaluate risk. Site-specific risk assessments using smaller

site boundaries typically would be conducted to evaluate risk on a site-by-site basis. This approach is more representative of areas that a future resident or small home range receptor would encounter over the course of exposure. When evaluating risk on a sitewide basis (a larger exposure area), as was done as part of this effort, hot spots could be overlooked and predicted risk might be less conservative. Similarly, the use of a 95-upper confidence limit of the mean (95 UCL) concentrations is also slightly more conservative than the use of average concentrations, as was done in this case, and is likely to result in slightly higher predicted risks. Consequently, as noted before, this evaluation is intended for comparative purposes only and is not intended to support actual cleanup decisions on a site-by-site basis.

Comparative Analysis of Cleanup Scenarios Based on Human Health Risk Evaluation

2.1 Evaluation of Human Health Risks Associated with the Background Cleanup Scenario

An evaluation of the human health risks associated with a background cleanup scenario (for example, using the LUT values as the cleanup levels) is presented in this section. The LUT values are from the *Chemical Look-Up Table Technical Memorandum* (DTSC, 2013a), as discussed in Section 1.3. The soil cleanup levels for both the background cleanup scenario and the risk-based cleanup scenario also were compared.

2.1.1 Methods and Assumptions

Cancer risk and noncancer hazard estimates were calculated using the risk ratio method and the site-specific suburban residential soil risk-based screening levels (RBSLs) (MWH, 2012). RBSLs are derived based on standard exposure assumptions for an RME suburban residential exposure scenario for soil, assuming no garden exposure scenario (MWH, 2012). The methods used to estimate risk and to calculate the RBSLs were consistent with the DTSC-approved Standardized Risk Assessment Manual (SRAM Rev. 2) (MWH, 2005) and with human health risk assessment procedures from the California Environmental Protection Agency ([Cal/EPA], 1992; Cal/EPA, 1994) and EPA (1989; 1991).

Risk and hazard estimates were calculated from the 59 chemicals that have been identified as COPCs that might require cleanup. As noted in Section 1.3, these 59 chemicals were identified based the frequency of detection and the detected concentrations that exceeded the cleanup levels (LUT values).

Table 2-1 provides the suburban residential soil RBSLs. Potential risks and hazards were estimated by using the risk ratio method. For cancer risk estimates, the exposure point concentration (EPC) is divided by the RBSL concentrations that are designated as being carcinogenic (cancer causing). The resulting ratio is multiplied by the target risk level (1×10^{-6}) to estimate chemical-specific risk for an RME scenario. For multiple chemicals, the cancer risk estimates for the chemicals are summed separately to estimate the total cancer risk for soil.

For noncancer health hazard estimates, the EPC in surface soil and mixed zone soil is divided by the noncancer RBSL. For multiple chemicals, the resulting ratios (known as HQs) are summed. The cumulative ratio represents a noncarcinogenic HI.

As discussed in Section 1.4, cancer risk estimates less than 1×10^{-6} and exposure areas with HIs lower than 1 are characterized as not posing a threat to human health for the evaluated exposed populations and pathways.

An HHRA is associated with inherent uncertainties and limitations and relies on various assumptions. EPA's *Risk Assessment Guidance for Superfund* (EPA, 1989) provides a detailed elaboration of these uncertainties, limitations, and assumptions. Specific issues associated with this comparative human health risk evaluation are discussed in the following text.

The risks estimated for this evaluation were based on the average 0- to 10-ft-below ground surface (bgs) soil concentrations using available soil samples evaluated across NASA-administered sites. The process of identifying the COPCs (Section 2.2.1) and the risk estimates for the background cleanup scenario (Section 2.2.3) used average concentrations that can result in an underestimation of risk. However, EPCs (which are based on a 95 UCL or equivalent concentration in a standard baseline HHRA) might be higher or lower at specific sites. This approach could result in an underestimation of risk and failure to identify areas in which higher EPCs occur for individual sites. For many less contaminated sites, where the site-specific EPC is less than the sitewide average

concentration, this approach might result in an overestimation of risks. Risk management actions, if needed, will be different for each site based on the site-specific nature and extent of contamination and the site-specific EPC.

The estimation of risk requires many assumptions to describe potential exposure situations (Cal/EPA, 1992; EPA, 1989). There are uncertainties regarding the likelihood of exposure, the frequency of contact with contaminated media, the concentration of contaminants at exposure points, and the period of exposure. These tend to simplify and approximate actual site conditions. In general, these assumptions are upper-bound assumptions intended to be conservative and yield an overestimate of the estimate of risks or hazards.

The screening approach used in this evaluation also does not account for the possibility that contaminants act synergistically or antagonistically (EPA, 1989). Therefore, there is uncertainty associated with the risk calculations, and potential risks might be overestimated or underestimated.

2.1.2 Background Cleanup Scenario Results

As discussed in Section 1.3, the "background cleanup scenario" represents site cleanup to background conditions. For each chemical detected in soil samples collected from NASA-administered site, the LUT value is used as the exposure point concentration to characterize risk under the background cleanup scenario. As listed in Table 2-2, the LUT values are composed of the background value at the "upper simultaneous limit" at a 95-percent upper simultaneous limit (95 USL) (DTSC, 2012) or, when background values are not available for a chemical, the laboratory-based reporting limit concentrations (DTSC, 2013a).

This scenario is based strictly on the use of the LUT values as cleanup levels and does not account for whether chemicals are detected in soil or, if detected, exceed the RBSLs. In other words, risks to human receptors are not considered when identifying those contaminants that require cleanup. Therefore, this scenario is highly conservative because it assumes that each chemical is detected in soil and, therefore, represents the cumulative risk of the 59 chemicals that have been identified as COPCs that might require cleanup. In most NASA-administered sites at SSFL, not all 59 chemicals have been detected. And, for many chemicals, the LUT values are lower than the RBSLs for a suburban residential exposure scenario, resulting in cleanup of contaminants that do not pose a risk to human health.

The evaluation calculations were performed using suburban residential exposure factors based on the potential future land use at SSFL (MWH, 2012). The exposure factors are standard exposure assessment assumptions in accordance with Cal/EPA and EPA guidance (Cal/EPA, 2011; EPA, 1989). Cumulative cancer risk and hazard estimates are calculated for the suburban residential exposure scenario using the LUT values in an effort to consider a proven conservative approach. Table 2-2 provides the results of the human health risk calculations by chemical. For purposes of this comparative exercise it is assumed that every COPC is detected in soil, which is highly conservative. If only the detected COPCs are considered, the risk and HI would be much lower.

These results indicate that the cumulative cancer risk from exposure to LUT values of COPCs is 7 x 10^{-4} . The primary contributor to risk is arsenic (a naturally occurring metal that is detected in every soil sample collected at SSFL), which contributes more than 99 percent of the total risk. The LUT value for arsenic is 46 milligrams per kilogram, which is based on the background concentrations and results in a 7 x 10^{-4} cancer risk estimate. Arsenic commonly is found at naturally occurring levels above the RBSL. Similar to arsenic, chromium VI is a naturally occurring metal that is detected in every soil sample collected as SSFL, with a cancer risk estimate of 1.5×10^{-6} . If arsenic and chromium VI are removed from the risk calculation, the cumulative risk would be 2×10^{-6} . No other compound contributes more than 1×10^{-6} to the total risk.

The HI from exposure to the LUT values is 2, which exceeds the noncancer threshold of 1. The primary contributor to the HI is arsenic. If the arsenic and chromium VI are removed from the HI, the HI would be 0.4, which is below the noncancer threshold.

The cumulative risk and HI estimates in this analysis are derived assuming that every COPC has been detected at a site, which is an unlikely condition, and therefore, highly conservative. If only the detected COPCs for a site are considered, the risk and HI would be much lower.

As noted in Table 2-2, with the exception of arsenic and chromium VI, the cancer risk estimates based on the LUT values are much less than the 10^{-6} to 10^{-4} risk management range and the noncancer HQ estimates are less than the target threshold of 1. These results indicate that additional risk reduction will not be achieved by cleaning up to background or reporting limits.

2.1.3 Comparing Background and Risk-based Cleanup Levels

Another way to illustrate that additional risk reduction is not achieved by cleaning up to background or reporting limits is to show how more or less conservative the LUT value is compared with the RBSL. With the exception of LUT values for arsenic and hexavalent chromium (chromium VI), the LUT values for the 59 COPCs are less than RBSLs. Similar to arsenic, chromium VI is a naturally occurring metal that is detected in every soil sample collected as SSFL. As detailed in Table 2-3, with the exception of arsenic and chromium VI, the background cleanup scenario is 1.5 times to more than 6 million times more conservative than is necessary to be protective of human health. The LUT value for acetone, for example, is 3 million times lower than the RBSL. For silver, the LUT value is 1,150 times lower than the RBSL.

2.1.4 Discussion

The evaluation of the background cleanup scenario risks and the comparison of the LUT values to the RBSLs indicate that cleaning up a given site to background levels would result in excavation beyond what is required by the more traditional risk-based approach to be protective of human health.

2.2 Comparison of Background and Risk-based Cleanup Scenarios for Site-specific Chemicals of Concern

In an effort to assess the difference in general cleanup requirements based on the background cleanup scenario versus a risk-based cleanup scenario, the cancer risks and noncancer hazards were estimated for site-specific COCs based on sampling results collected for the NASA-administered sites at SSFL. This comparison exercise is completed to illustrate the potential differences between background and risk-based cleanup scenarios and is not intended to represent a standard HHRA for the individual NASA-administered sites at SSFL. Nor is it intended to provide information that supports site-management decisions—for example, cleanup or additional sampling—at individual NASA-administered sites at SSFL or for individual NASA-administered sites as a whole. Again, this exercise is intended to address outstanding public comments.

The analysis in this subsection is intended to compare the level of protectiveness by cleaning up soil to background, as required by the 2010 AOC, versus cleaning up only those chemicals that pose unacceptable risk to human receptors and require cleanup (the site-specific COCs based on potential human health risks).

2.2.1 Selection of Site-specific Contaminants of Concern

The COCs were selected based on whether the average soil concentrations from samples collected from 0 to 10 ft bgs from the NASA-administered sites exceeded the lowest RBSL (between the cancer effects and the noncancer effects RBSLs). The average soil concentration was calculated for each chemical assuming one-half the reporting limit for nondetects (Table 2-4). Vinyl chloride, benzo(a)pyrene (BaP) equivalent, n-nitrosodimethylamine, arsenic, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity equivalent (TEQ) had average soil concentrations greater than their RBSLs and were identified as COCs for this comparative exercise (Table 2-4).

This analysis is for illustrative purposes, because EPCs might be lower or higher at individual NASA-administered sites, and therefore, result in a different list of COCs and different risk management actions required to address potentially unacceptable risks to human receptors.

2.2.2 Risk-based Cleanup Scenario Risk Estimates

Under the risk-based cleanup scenario, cancer risk and noncancer hazard estimates were calculated for the five COCs using the RBSL as the cleanup level (Table 2-5). Risk and HQ estimates were not provided for the 54 COPCs that were not identified as COCs. Because COCs would be remediated to risk-based concentrations, the cancer risk estimates are equal for each COC to 1×10^{-6} and the HQ estimates are equal to 1. The cumulative cancer risk estimates for all of the COCs using the RBSLs as the EPC is 5×10^{-6} and the total noncancer HI is 4.

2.2.3 Background Cleanup Scenario Risk Estimates

Under the background scenario, cancer risk and noncancer hazard estimates were calculated for each COC using the LUT values for the EPC (Table 2-5). Risk and HQ estimates were not provided for 54 COPCs that were not identified as COCs. The cumulative cancer risk estimates for all COCs using the average soil concentration as the EPC is 7×10^{-4} and the total noncancer HI is 2.

As noted previously, arsenic was one of the five COCs identified. However, because the cleanup level for arsenic (based on an LUT value that is a background concentration) represents an elevated (that is, greater than 10^{-4}) cancer risk estimate that is not site related. The results in Table 2-5 are listed without arsenic. The cumulative cancer risk estimates for all of the COCs using the average soil concentration as the EPC is 9 x 10^{-7} and the total noncancer HI is 0.04.

2.2.4 Discussion

The background cleanup scenario results in cleanup that is generally more conservative than what is required to be protective of human health (that is, cleanup under a risk-based scenario). The comparative results provided in Table 2-5 indicate that—based on the average sitewide concentrations—cleaning up COCs in soil to background levels would result in cleanup in the NASA-administered sites beyond what is required to be protective of human health.

The ratio of the risk estimates for the risk-based cleanup scenario relative to the background cleanup scenario was calculated and is presented in Table 2-5. Because only 5 of the 59 COPCs were identified as COCs, the risk ratio was only estimated for those chemicals, as listed in Table 2-5.

The cancer risk ratio ranged from 3.3 to 5.7, with the greatest ratio associated with 2,3,7,8-TCDD TEQ. The noncancer hazard ratio ranged from 49 to 10,000, with the greatest ratio associated with vinyl chloride. Ratios greater than 1 indicate that the background cleanup scenario is more conservative than the risk-based cleanup scenario. For example, a ratio of 4 indicates that the background cleanup scenario is up to four times more conservative than what is required to be protective of human health.

Under the background cleanup scenario (when using the LUT values as the EPCs to estimate risks), 53 of the 59 chemicals identified as COPCs that are proposed for remediation do not pose an unacceptable risk to human health.

Comparative Analysis of Cleanup Scenarios based on Ecological Risk Evaluation

3.1 Evaluation of Ecological Risk Associated with the Background Cleanup Scenario

An evaluation of the ecological risks associated with a background cleanup scenario (using the LUT values as the cleanup levels) is presented in this section. The LUT values are from the *Chemical Look-Up Table Technical Memorandum* (DTSC, 2013a) and were developed in agreement with DTSC, as discussed in Section 1.3. As listed in Table 1-1, the LUT values are composed of the background value at the 95 USL) (DTSC, 2012) or, when background values are not available for a chemical, the laboratory-based MRL concentrations (DTSC, 2013a).

3.1.1 Methods and Assumptions

The potential for adverse effects to ecological receptors under the background scenario was evaluated using ecologically relevant benchmarks called no-effect and low-effect levels. No-effect and low-effect levels are DTSCapproved calculated dose-equivalent medium concentrations for mammals and birds that are used to assess risks to terrestrial receptors exposed to soil at SSFL, as discussed in the technical memorandum, Ecological Risk-Based Screening Levels for Use in Ecological Risk Assessments at SSFL (MWH, 2011). No-effect levels generally are based on no observed adverse effect levels, while low-effect levels are based on lowest observed adverse effect levels. The no- and low-effect levels are intended to streamline the ERA process and were reviewed and agreed to by DTSC. The parameters that were used to calculate the no- and low-effect levels follow EPA and DTSC risk assessment guidance (EPA, 1998; DTSC, 1996), as well as the DTSC-approved SRAM, Revision 2 (MWH, 2005) and have been approved by DTSC for assessing risk at SSFL. Table 3-1 lists the no- and low-effect levels. It should be noted that direct exposure-based ecological risk-based screening levels also are available for plants and soil invertebrates; however, according to the SRAM, Revision 2 (MWH, 2005), plants are only evaluated quantitatively in ERAs at SSFL if evidence of plant stress is noted during site visits. Also, no- and low-effect levels for birds and mammals generally were more conservative than the soil invertebrate screening levels. Consequently, bird and mammal no- and low-effect levels were considered protective of plants and soil invertebrates. This approach might underestimate risks in instances where the terrestrial invertebrate effect levels are lower; however, it is likely to have little impact on the overall predicted risk.

Potential risks under the background cleanup scenario were estimated by dividing the LUT value by the no-effect level, as well as the low-effect level, to give a risk range. If the resulting HQ was greater than 1, the potential for risk exists and additional qualitative evaluation (comparison to background, frequency of exceedance, magnitude of exceedance, etc.) is necessary. If the resulting HQ was less than 1, then no risk is predicted.

3.1.2 Background Cleanup Scenario Results

As discussed in Section 1.3, the background cleanup scenario represents site cleanup to background conditions. For each chemical detected in soil samples collected from the NASA-administered site, the LUT value, as discussed in Section 3.1 and presented in Table 1-1, is used as the EPC to characterize risk under the background cleanup scenario. This scenario is strictly concentration-based and does not account for risks to human or ecological receptors when identifying those contaminants that require cleanup. In most cases, this approach is highly conservative.

Table 3-2 provides the results of the ecological risk calculations by chemical. Of the 59 chemicals that were identified as requiring cleanup under the background scenario (Section 1.3 provides more discussion of how the 59 chemicals were selected), 73 percent (43/59) were not predicted to pose ecological risk (HQs were less than 1). For 9 contaminants, risk was predicted based on the no-effect concentration but not based on the low-effect concentration, indicating that the overall ecological risk is low. Although ecological risk was predicted for arsenic,

copper, lead, and 2-methyl-4-chlorophenoxyacetic acid (MCPA), the LUT values were based on background values for each chemical, suggesting that residual risk is attributed to naturally occurring or ambient concentrations and is not site-related.

3.1.3 Comparing Background and Risk-based Cleanup Levels

For the majority of chemicals, as listed in Table 3-3, the LUT values were 1.5 to 42,000 times more conservative than the no-effect level and 1.2 to 200,000 times more conservative than the low-effect level. This result suggests that, at a minimum, in most cases the background scenario is cleaning up to concentrations that are almost two times more conservative than necessary to protect ecological receptors. For arsenic, copper, lead, and MCPA, both the no-effect and low-effect levels were more conservative than the LUT values, which suggests that the residual risk is associated with naturally occurring concentrations and is not site-related.

3.2 Comparison of Background and Risk-based Cleanup Scenarios for Site-specific Chemicals of Ecological Concern

In an effort to assess the difference in general cleanup requirements based on the background cleanup scenario versus a risk-based cleanup scenario, risks were estimated for site-specific COCs based on sampling results collected for all of the NASA-administered sites at SSFL. The risk-based cleanup scenario represents site cleanup to concentrations that are considered to not pose unacceptable risks to ecological receptors. Risk assessment is the most commonly used approach for identifying those contaminants that require cleanup under CERCLA.

This analysis is intended to compare the level of protectiveness by cleaning up soil to background, as required by the 2010 AOC, versus cleaning up only those chemicals that pose unacceptable risk to ecological receptors. This comparison is completed to illustrate the potential differences between background and risk-based cleanup scenarios and is not intended to represent a standard risk assessment for the individual NASA-administered sites at SSFL.

3.2.1 Selection of Site-specific Contaminants of Ecological Concern

To select which chemicals would require cleanup under a risk-based scenario, the soil dataset was modified to include only those soil depths that were considered to support a complete ecological exposure pathway. According to the SRAM, Revision 2 (MWH, 2005), ecological receptors might be exposed to soils from 0 to 6 ft bgs. Consequently, the available soil data from 0 to 6 ft bgs were included in the ecological dataset to identify contaminants of potential ecological concern. Soil data from deeper than 6 ft bgs are not considered to support a complete exposure pathway for ecological receptors; therefore, these data were excluded. Summary statistics for the soil data set are presented in Table 3-4. The soil data were screened to evaluate what chemicals pose potential risks to ecological receptors. Only those chemicals that were detected in one or more samples and had a detection frequency of more than 5 percent were retained for consideration. Because data were combined on a sitewide basis, this approach might result in an underestimation of risk and failure to identify areas at which hot spots occur within each individual site. However, because receptors might forage in an area larger than the site and exposure to site-related contamination might be intermittent, isolated hot spots are not likely to result in impacts on populations of receptors.

The potential for adverse effects to ecological receptors was evaluated using ecologically relevant benchmarks called no-effect and low-effect levels, as discussed in Section 3.1.1. Table 3-1 lists the no- and low-effect levels.

To select what chemicals would be identified as COECs, four HQs were calculated for each chemical, as follows: 1) the maximum detected soil concentration compared to the no-effect level; 2) the maximum detected soil concentration compared to the low-effect level; 3) the average detected soil concentration compared to the noeffect level; and 4) the average detected soil concentration compared to the low-effect level. Average concentrations were calculated using one half the reporting limit for nondetect concentrations. Calculating four HQs provides a risk range for evaluating whether a given chemical poses potential risk. In an effort to account for cumulative risks and to be consistent with SRAM guidance (MWH, 2005), the HQs for Arcolor-1254 and Aroclor-1260 were summed to calculate the resulting HI.

Chemicals with no-effect HQs less than 1 pose no risk and were not evaluated further. When a chemical had noeffect HQs greater than 1 but one or more low-effect HQs less than 1, the potential for risk was further evaluated qualitatively based on magnitude of exceedance, frequency of exceedance, and concentrations relative to background values, as appropriate. In some cases, chemicals with low-effect HQs less than 1 were still identified as COCs if data suggested a potential for hot spots. If the maximum detected concentration was less than the background value, the chemical was considered to be consistent with background and was not identified as a COEC.

Chemicals were identified as COECs when all of the no- and low-effect HQs were greater than 1 and the chemical was not considered to be consistent with background. If the HI for aroclors exceeded 1, all aroclors were identified as COECs regardless of the individual HQs.

Five chemicals (antimony, Aroclor-1254, Aroclor-1260, cadmium, and 2,3,7,8-TCDD TEQ), were identified as COECs (Table 3-4). All no-effect and low-effect HQs for Aroclor-1260 and cadmium exceeded 1. Although only the low-effect HQs and the no-effect HQ based on the average concentration exceeded 1 for antimony, Aroclor-1254, and 2,3,7,8-TCDD TEQ, additional evaluation indicated that these chemicals have a potential to pose risk. Antimony was detected at concentrations greater than background in 65 percent of samples, and 23 percent of samples exceeded the low-effect level. Aroclor-1254 was retained as a COEC because the cumulative risk for aroclors exceeded 1. For 2,3,7,8-TCDD TEQ, 10 percent of the samples exceeded the low-effect level and hot spots are possible. The other chemicals were considered to pose a low to negligible risk and were not identified as COECs based on the rationale provided in Table 3-4.

It should be noted that this risk evaluation is for informational purposes only and is not intended to represent risk on a site-by-site basis. Additional risk efforts for each NASA-administered site might result in a different list of COECs requiring cleanup. This risk evaluation was conducted on a sitewide basis to give the reader a broad picture of the differences between a background and a risk-based cleanup scenario.

3.2.2 Risk-based Cleanup Scenario Risk Estimates

As discussed in Section 3.2.1., the low-effect levels are based on lowest observed adverse effect levels. For most ecological receptors, a low-effect level generally is considered appropriate for assessing population-level risk. Consequently, the low-effect level was used to represent the preliminary cleanup value for this comparison, as presented in Table 3-5. Because the five identified COECs (antimony, Aroclor-1260, Aroclor-1254, cadmium, and 2,3,7,8-TCDD TEQ) would be remediated to the low-effect level under the risk-based scenario , residual risk would be equivalent to an HQ of 1. HQs were not presented for chemicals that were not identified as COECs based on the risk screening presented in Section 3.2.1 (Table 3-4).

3.2.3 Background Cleanup Scenario Risk Estimates

Under the background scenario, HQs were calculated by dividing the LUT value by the low-effect level for each chemical identified as a COEC (Table 3-5). The low-effect level was selected over the no-effect level because, typically, a low-effect value would be selected as a final cleanup level for populations of ecological receptors as opposed to a no-effect value. Resulting HQs were less than 1 for all COECs. Based on the ratio of the risk-based HQ to the background HQ, the background cleanup scenario is 1.2 to 5.5 times more conservative than is necessary to protect ecological receptors from identified COECs.

3.3 Discussion

On the basis of the comparison of LUT values to low-effect levels (Table 3-2), the background cleanup scenario is 1.2 to 200,000 times more conservative than necessary to protect ecological receptors for each of the 59 chemicals. For the five analytes identified as potentially requiring cleanup under a risk-based scenario, the background scenario is 1.2 to 5.5 times more conservative (Table 3-5).

Additionally, the background scenario requires cleanup of 59 chemicals. Of these 59 chemicals, 54 chemicals were not identified as posing significant risk to ecological receptors either because they are located at depths deeper than 6 ft bgs (deeper than ecological receptors would be exposed) or because the risk evaluation indicated that risk was low to negligible (as presented in Table 3-4). Consequently, large areas of habitat that do not contain contaminants at concentrations known to pose risk to ecological receptors will be dug up and destroyed under the background cleanup scenario. Consequently, if remediated, the ecosystem might never fully recover to its current state. Alternatively, if hot spot removal were conducted to address only those few contaminants found to pose potential risk to ecological receptors, impacts to the environment would be much more limited and a large majority of the current habitat would remain intact and continue to support functioning ecosystems.

Spatial Evaluation of Excavation Boundaries under Background versus Risk-Based Cleanup Scenarios

This discussion and the related figures are intended to provide the reader with a broad picture of the spatial impact of the background cleanup scenario versus the risk-based cleanup assessment and are for comparative purposes only. The figure representing the excavation footprint under the risk-based cleanup is based on data collected and evaluated as part of past Remedial Investigations (RIs) (as indicated in the following text) and does not include data collected subsequent to the RIs. The figure presents areas that require cleanup on a point-by-point basis as opposed to a more sitewide holistic approach (as used in Sections 2 and 3) and is a conservative representation of the areas that might require excavation under the risk-based cleanup scenario. Additionally, the risk-based screening levels used in this risk evaluation were developed subsequent to the RIs and are not the same as those values used when developing the spatial extent of areas requiring excavation under the risk-based approach. Similarly, the figure representing the background areas requiring cleanup are based on outdated LUT values and are not inclusive of all the data used as part of this risk evaluation. Consequently, as noted earlier, these figures are intended merely to give the reader a broad spatial understanding of the areas requiring cleanup under each scenario and are not intended to be representative of the risk evaluation results in Sections 2 and 3, although the overall footprints likely would be similar.

Figure 4-1 presents the general areas that would require cleanup under the background scenario. These excavation boundaries are based on the draft May 2013 LUT values; however, use of the revised June 2013 values is not likely to significantly affect the footprints. Figure 4-2 presents the general cleanup footprints based on the site-specific risk assessment results presented in the RI Reports published for the NASA-administered sites between 2007 and 2009 (MWH, 2007; NASA, 2008, 2009a, 2009b) and provides a representation of the estimated footprint that likely would require cleanup under a risk-based assessment. Because the risk assessment effort included in this white paper was conducted on a sitewide basis, it is likely less conservative than the site-specific risk assessments conducted for the RI Reports, and the resulting footprints would be smaller. Consequently, the risk-based footprints presented in Figure 4-2 are more conservative (larger) than the footprint that would be estimated based on the sitewide risk assessment in this white paper.

Under the background cleanup scenario, a total of 105 acres would require cleanup. Alternatively, only 18 acres would require cleanup under the risk-based cleanup scenario presented in previous reports. As a result, approximately 87 acres of habitat in which contaminants currently pose no risk to ecological or human health receptors would be destroyed under the background cleanup scenario. Revitalization of these habitats could take hundreds of years and these habitats might never fully recover to their current state.

This page intentionally left blank.

SECTION 5 Conclusions

NASA received many public questions about the benefits of a soil cleanup as prescribed by the 2010 AOC. The objective of this paper is to address those concerns and questions, and to evaluate the differences in general cleanup requirements between a background cleanup scenario versus a risk-based cleanup scenario typically conducted under the CERCLA process. To support this effort, human health and ecological risk evaluations were conducted using recently acquired field data for the sites within Groups 2, 3, 4, and 9 to present the differential risk between the background scenario and a risk-based cleanup scenario. The risk evaluations were conducted based on standard Cal/EPA and EPA guidance.

This paper provides an evaluation of 59 chemicals. These 59 chemicals were selected as requiring cleanup under the background scenario based on agreements among NASA and DTSC. The 59 chemicals include those detected across SSFL that that exceeded the LUT values published by DTSC in May 2013.

On the basis of this comparative analysis, cleanup to the background scenario is more conservative than necessary to protect human health and the environment based on three factors: 1) application of background LUT values (cleanup levels) that are 1.2 to more than 1 million times more conservative than risk-based levels; 2) potentially requiring cleanup to meet the 2010 AOC of up to 51 chemicals that do not pose risk; and 3) potentially affecting up to 87 additional acres under the 2010 AOC as compared to a risk-based cleanup.

Consequently, the evaluation identified differing approaches and impacts, related to the benefits to human health and the environment, of cleaning up to background. The more aggressive cleanup of the site that would occur under the background cleanup (more soil removal, more trucks entering the site, more emissions, more road miles, more soil to dispose of in landfills, etc.) could result in an increase in traffic accidents and spills and more habitat modification, as well as disturbance of wildlife and more impacts to archeological resources, all of which might result in reduced net benefits when compared to the risk-based cleanup scenario. This page intentionally left blank.

References

California Environmental Protection Agency (Cal/EPA). 1992. Supplemental Guidance for Human Health Multimedia Risk Assessment of Hazardous Waste Sites and Permitted Facilities.

California Environmental Protection Agency (Cal/EPA). 1994. *Preliminary Endangerment Assessment Guidance Manual.*

California Environmental Protection Agency (Cal/EPA). 2011. *Human Health Risk Assessment (HHRA) Note Number 1. Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities.* California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO). May 20.

Department of Toxic Substances Control (DTSC). 1996. *Guidance for Ecological Risk Assessment of Hazardous Waste Sites and Permitted Facilities*. July.

Department of Toxic Substances Control (DTSC). 2012. *Final Chemical Soil Background Study Report. Santa Susana Field Laboratory, Ventura County, California*. California Environmental Protection Agency. December.

Department of Toxic Substances Control (DTSC). 2013. *Chemical Look-Up Table Technical Memorandum, Santa Susana Field Laboratory, Ventura County, California*. May 21.

MWH Americas, Inc. (MWH). 2005. *Standardized Risk Assessment Methodology (SRAM) Work Plan, Santa Susana Field Laboratory, Ventura County, California*. Revision 2–FINAL. September.

MWH Americas, Inc. (MWH). 2007. Group 4–Southern Portion of Area II RCRA Facility Investigation Report, Santa Susana Field Laboratory, Ventura County, California. Volume I-Text, Tables, and Figures. August.

MWH Americas, Inc. (MWH). 2011. Ecological Risk-Based Screening Levels for Use in Ecological Risk Assessments at the Santa Susana Field Laboratory, Ventura County, California.

MWH Americas, Inc. (MWH). 2012. Draft Human Health Risk-Based Screening Levels (HH RBSLs) for Chemicals in Soil for Use in RCRA Facility Investigations / Remedial Investigations (RFI/RIs) at the Santa Susana Field Laboratory (SSFL), California. November 7.

National Aeronautics and Space Administration (NASA). 2008. Draft RCRA Facility Investigation Report Santa Susana Field Laboratory, Ventura County, California. November.

National Aeronautics and Space Administration (NASA). 2009a. Draft Group 3 Remedial Investigation Report at the Santa Susana Field Laboratory, Ventura County, California. March.

National Aeronautics and Space Administration (NASA). 2009b. Draft Group 9 Remedial Investigation Report at the Santa Susana Field Laboratory, Ventura County, California. November.

National Aeronautics and Space Administration (NASA). 2013. Draft Environmental Impact Statement for Proposed Demolition and Environmental Cleanup Activities at Santa Susana Field Laboratory, Ventura County, California. Prepared for George C. Marshall Space Flight Center, Huntsville, Alabama. July.

Science Applications International Corporation (SAIC). 1994. *Final RCRA Facility Assessment Report for Rockwell International Corporation, Boeing Division, Santa Susana Field Laboratory*. Ventura County, California. Prepared for EPA, Region 9. May.

U.S. Environmental Protection Agency (EPA). 1989. *Risk Assessment Guidance for Superfund – Volume I: Human Health Evaluation Manual, Part A*. Interim Final. Office of Solid Waste and Emergency Response.

U.S. Environmental Protection Agency (EPA). 1991. *RAGS: Volume 1—HHEM Supplemental Guidance. Standard Default Exposure Factors.* Interim Final. Office of Solid Waste and Emergency Response. OSWER Directive 9285.6-03.

U.S. Environmental Protection Agency (EPA). 1998. Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F. April.

U.S. Environmental Protection Agency (EPA). 2013. *Ecological Risk Assessment*. <u>http://www.epa.gov/superfund/programs/nrd/era.htm</u>. Accessed April 8.

Tables

This page intentionally left blank.

TABLE 1-1 Look-up Table Values for Analytes Requiring Cleanup Under the Background Cleanup Scenario

Chemical	Dualization Details 4 Charatal	Look un Table Velue ^b (m. 4.)	
Class	Preliminary Priority 1 Chemicals	Look-up Table Value ^b (mg/kg)	Basis
Dioxins	2,3,7,8-TCDD TEQ	0.00000912	BTV-TEQ
Formaldehyde	Formaldehyde	1.87	Background MRL
Herbicides	Dichloroprop	0.0024	Background MRL
Herbicides	МСРА	0.761	BTV
Herbicides	МСРР	0.371	BTV
Inorganic	Cyanide	0.6	Background MRL
Inorganic	Perchlorate	1.63	BTV
Metals	Antimony	0.86	BTV
Metals	Arsenic	46	BTV
Metals	Cadmium	0.7	BTV
Metals	Chromium VI	2	BTV
Metals	Copper	119	BTV
Metals	Lead	49	BTV
Metals	Mercury	0.05	BTV
Metals	Silver	0.2	BTV
Metals	Zinc	215	BTV
PAHs	1-Methyl naphthalene	0.01	Reporting Limit
PAHs	2-Methylnaphthalene	0.01	Reporting Limit
PAHs	Acenaphthene	0.0025	Background MRL
PAHs	Acenaphthylene	0.0025	Background MRL
PAHs	Anthracene	0.0025	Background MRL
PAHs	B(a)P TEQ	0.00447	BTV-TEQ
PAHs	Benzo(a)pyrene	0.0023	BTV
PAHs	Benzo(ghi)perylene	0.0025	Background MRL
PAHs	Fluoranthene	0.0052	BTV
PAHs	Fluorene	0.0038	BTV
PAHs	Naphthalene	0.0036	BTV
PAHs	Phenanthrene	0.0039	BTV
PAHs	Pyrene	0.0056	BTV
РСВ	Aroclor 1016	0.017	BTV
РСВ	Aroclor 1221	0.033	BTV
РСВ	Aroclor 1232	0.017	BTV
РСВ	Aroclor 1242	0.017	BTV
PCB	Aroclor 1248	0.017	BTV
PCB	Aroclor 1254	0.017	BTV
PCB	Aroclor 1260	0.017	BTV
PCB	Aroclor 1262	0.033	BTV
PCB	Aroclor 1268	0.033	BTV
Pesticides	4,4'-DDE	0.0086	BTV
Pesticides	4,4'-DDT	0.013	BTV
Pesticides	Chlordane	0.007	BTV

Comparative Analysis of the Background and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

TABLE 1-1 Look-up Table Values for Analytes Requiring Cleanup Under the Background Cleanup Scenario Comparative Analysis of the Background and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

Chemical				
Class	Preliminary Priority 1 Chemicals	Look-up Table Value ^b (mg/kg)	Basis	
Pesticides	Dieldrin		Background MRL	
SVOC	Benzoic acid		Multi-Lab MRL	
SVOC	bis(2-Ethylhexyl) phthalate		BTV	
SVOC	Butyl benzyl phthalate		BTV	
SVOC	Di-n-butyl phthalate		Background MRL	
SVOC	Di-n-octyl phthalate		Background MRL	
SVOC	N-Nitrosodimethylamine		Reporting Limit	
SVOC	Pentachlorophenol		Reporting Limit	
SVOC	Phenol		Reporting Limit	
VOCs	2-Hexanone		Reporting Limit	
VOCs	Acetone		Reporting Limit	
VOCs	cis-1,2-Dichloroethene		Reporting Limit	
VOCs	Ethylbenzene		Reporting Limit	
VOCs	Hexachlorobutadiene		Reporting Limit	
VOCs	Methylene chloride		Reporting Limit	
VOCs	Tetrachloroethene		Reporting Limit	
VOCs	Toluene		Reporting Limit	
VOCs	Trichloroethene		Reporting Limit	
VOCs	Vinyl chloride		Reporting Limit	
Notes:				
µg/kg = Micrograms p	er kilogram			
mg/kg = Milligram per	r kilogram			
B(a)P = Benzo(a)pyrer	ne			
B(a)P TEQ = Benzo(a)p	pyrene toxic equivalency for the 7 carcinogenic	PAHs (Benzo(a)pyrene, Benzo(a)anth	iracene,	
Benzo(b)fluoranthene	, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)a	inthracene, and Indeno(1,2,3-cd)pyre	ne)	
Ponzo(a)nyrono and P	(a)P TEQ are considered a single chemical of po	stantial concorn		
BTV = Background thr				
DDE = Dichlorodiphen				
DDE = Dichlorodiphen				
	not detected or was not analyzed.			
PAH = Polycyclic arom	-			
PCB = Polychlorinated	-			
RBSL = Risk-based scre SVOC = Semivolatile o	-			
	hlorodibenzo-p-dioxin			
VOC = Volatile organic				
	2013 query of master database for NASA SSFL S			
	s subject to change. Department of Toxic Subst		Look-Up Table	
Technical Memorandu	um, Santa Susana Field Laboratory, Ventura Cou	inty, California. June 11.		

TABLE 2-1 Human Health Risk-based Screening Levels

Comparative Analysis of the Background and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

Chemical Class	Analyte	Suburban Residential (w/o garden) RBSL ^a (mg/kg)
Dioxins	2,3,7,8-TCDD TEQ	4.81E-06
Formaldehyde	Formaldehyde	12,210
Herbicides	Dichloroprop	686
Herbicides	MCPA	34
Herbicides	MCPP	69
Inorganic	Cyanide	1,522
Inorganic	Perchlorate	53
Metals	Antimony	26
Metals	Arsenic	0.066
Metals	Cadmium	35
Metals	Chromium VI	1.3
Metals	Copper	3,043
Metals	Lead	80
Metals	Mercury	17
Metals	Silver	230
Metals	Zinc	22,825
PAHs	1-Methyl naphthalene	7.3
PAHs	2-Methylnaphthalene	162
PAHs	Acenaphthene	3,226
PAHs	Acenaphthylene	2,978
PAHs	Anthracene	16,428
PAHs	B(a)P TEQ	0.039
PAHs	Benzo(ghi)perylene	1,652
PAHs	Fluoranthene	2,203
PAHs	Fluorene	2,177
PAHs	Naphthalene	15
PAHs	Phenanthrene	16,437
PAHs	Pyrene	1,652
РСВ	Aroclor 1016	3.9
РСВ	Aroclor 1221	0.23
РСВ	Aroclor 1232	0.23
РСВ	Aroclor 1242	0.23
РСВ	Aroclor 1248	0.23
РСВ	Aroclor 1254	0.23
РСВ	Aroclor 1260	0.23
РСВ	Aroclor 1262	0.23
РСВ	Aroclor 1268	0.23
Pesticides	4,4'-DDE	1.7
Pesticides	4,4'-DDT	1.7
Pesticides	Chlordane	1.7

TABLE 2-1 Human Health Risk-based Screening Levels

Comparative Analysis of the Background and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

Chemical Class	Analyte	Suburban Residential (w/o garden) RBSL ^ª (mg/kg)
Pesticides	Dieldrin	0.037
SVOC	Benzoic acid	244,417
SVOC	bis(2-Ethylhexyl) phthalate	173
SVOC	Butyl benzyl phthalate	274
SVOC	Di-n-butyl phthalate	6,110
SVOC	Di-n-octyl phthalate	2,444
SVOC	N-Nitrosodimethylamine	0.033
SVOC	Pentachlorophenol	21
SVOC	Phenol	18,330
VOCs	2-Hexanone	170
VOCs	Acetone	60,077
VOCs	cis-1,2-Dichloroethene	9.2
VOCs	Ethylbenzene	2.3
VOCs	Hexachlorobutadiene	6.7
VOCs	Methylene chloride	3.0
VOCs	Tetrachloroethene	0.42
VOCs	Toluene	513
VOCs	Trichloroethene	0.80
VOCs	Vinyl chloride	0.020

Notes:

B(a)P = Benzo(a)pyrene

B(a)P TEQ = Benzo(a)pyrene toxic equivalency for the 7 carcinogenic PAHs (Benzo(a)pyrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, and Indeno(1,2,3-cd)pyrene)

DDE = Dichlorodiphenyldichloroetheylene

DDT = Dichlorodiphenyldichloroetheylene

PAH = Polycyclic aromatic hydrocarbon

PCB = Polychlorinated biphenyl

RBSL = Risk-based screening level

SVOC = Semivolatile organic compound

^{a:} MWH Americas, Inc. (MWH). 2012. Draft Human Health Risk-Based Screening Levels (HH RBSLs) for Chemicals in Soil for Use in RCRA Facility Investigations / Remedial Investigations (RFI/RIs) at the Santa Susana Field Laboratory (SSFL), California. November 7.

TABLE 2-2 Cancer Risk and Noncancer Hazard Estimates for Background Closure Scenario based on Look-up Table Values

Comparative Analysis of the Background and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

				Cancer	r and Noncancer Est	imates Calculated b	ased on RME Suburban Reside	ential Soil RBSL ^a	
Chemical Class	Analyte	CAS #	Look-up Table Values ^b (mg/kg)	Composite Resident Soil RBSL Cancer (TRL = 10 ⁻⁶) (mg/kg)	Residential Cancer Risk Estimate	Percent Contribution	Compostie Child Resident Soil RBSL Noncancer (THQ = 1) (mg/kg)	Residential Hazard Quotient	Percent Contribution
Dioxins	2,3,7,8-TCDD TEQ	DIOXTEQM	0.000000912	4.81E-06	1.9E-07	<0.01%	5.05E-05	1.8E-02	0.72%
Formaldehyde	Formaldehyde	50000	1.87	590,952	3.2E-12	<0.01%	12,210	1.5E-04	<0.01%
Herbicides	DichlorOprop	120365	0.0024	-	-	-	686	3.5E-06	<0.01%
Herbicides	МСРА	94746	0.761	-	-	-	34	2.2E-02	0.88%
Herbicides	MCPP	93652	0.371	-	-	-	69	5.4E-03	0.22%
Inorganic	Cyanide	57125	0.6	-	-	-	1,522	3.9E-04	<0.01%
Inorganic	Perchlorate	14797730	1.63	-	-	-	53	3.1E-02	1.22%
Metals	Antimony	7440360	0.86	-	-	-	26	3.3E-02	1.30%
Metals	Arsenic	7440382	46	0.066	7.0E-04	99.54%	22	2.1E+00	84.63%
Metals	Cadmium	7440439	0.7	844	8.3E-10	<0.01%	35	2.0E-02	0.79%
Metals	Chromium VI	18540299	2	1.3	1.5E-06	0.21%	234	8.5E-03	0.34%
Metals	Copper	7440508	119	-	-	-	3,043	3.9E-02	1.56%
Metals	Mercury	7439976	0.05	-	-	-	17	3.0E-03	0.12%
Metals	Silver	7440224	0.2	-	-	-	230	8.7E-04	<0.01%
Metals	Zinc	7440666	215	-	-	-	22,825	9.4E-03	0.37%
PAHs	1-Methyl naphthalene	90120	0.01	7.3	1.4E-09	<0.01%	2,846	3.5E-06	<0.01%
PAHs	2-Methylnaphthalene	91576	0.01	-	-	-	162	6.2E-05	<0.01%
PAHs	Acenaphthene	83329	0.0025	-	-	-	3,226	7.8E-07	<0.01%
PAHs	Acenaphthylene	208968	0.0025	-	-	-	2,978	8.4E-07	<0.01%
PAHs	Anthracene	120127	0.0025	-	-	-	16,428	1.5E-07	<0.01%
PAHs	B(a)P TEQ	PAHTEQM	0.00447	0.039	1.2E-07	<0.01%	-	-	-
PAHs	Benzo(ghi)perylene	191242	0.0025	-	-	-	1,652	1.5E-06	<0.01%
PAHs	Fluoranthene	206440	0.0052	-	-	-	2,203	2.4E-06	<0.01%
PAHs	Fluorene	86737	0.0038	-	-	-	2,177	1.7E-06	<0.01%
PAHs	Naphthalene	91203	0.0036	15	2.5E-10	<0.01%	681	5.3E-06	<0.01%
PAHs	Phenanthrene	85018	0.0039	-	-	-	16,437	2.4E-07	<0.01%
PAHs	Pyrene	129000	0.0056	-	-	-	1,652	3.4E-06	<0.01%
PCB	Aroclor 1016	12674112	0.017	6.6	2.6E-09	<0.01%	3.9	4.4E-03	0.18%
РСВ	Aroclor 1221	11104282	0.033	0.23	1.4E-07	<0.01%	1.1	3.0E-02	1.19%
PCB	Aroclor 1232	11141165	0.017	0.23	7.3E-08	<0.01%	1.1	1.5E-02	0.61%
PCB	Aroclor 1242	53469219	0.017	0.23	7.3E-08	<0.01%	1.1	1.5E-02	0.61%
PCB	Aroclor 1248	12672296	0.017	0.23	7.3E-08	<0.01%	1.1	1.5E-02	0.61%
РСВ	Aroclor 1254	11097691	0.017	0.23	7.3E-08	<0.01%	1.1	1.5E-02	0.61%
РСВ	Aroclor 1260	11096825	0.017	0.23	7.3E-08	<0.01%	1.1	1.5E-02	0.61%
РСВ	Aroclor 1262	37324235	0.033	0.23	1.4E-07	<0.01%	1.1	3.0E-02	1.19%
РСВ	Aroclor 1268	11100144	0.033	0.23	1.4E-07	<0.01%	1.1	3.0E-02	1.19%
Pesticides	4,4'-DDE	72559	0.0086	1.7	4.9E-09	<0.01%	-	-	-
Pesticides	4,4'-DDT	50293	0.013	1.7	7.5E-09	<0.01%	34	3.8E-04	<0.01%
Pesticides	Chlordane	57749	0.007	1.7	4.1E-09	<0.01%	34	2.0E-04	<0.01%
Pesticides	Dieldrin	60571	0.00048	0.037	1.3E-08	<0.01%	3.4	1.4E-04	<0.01%
SVOC	Benzoic acid	65850	0.66	-	-	-	244,417	2.7E-06	<0.01%
SVOC	bis(2-Ethylhexyl) phthalate	117817	0.061	173	3.5E-10	<0.01%	1,222	5.0E-05	<0.01%
SVOC	Butyl benzyl phthalate	85687	0.1	274	3.7E-10	<0.01%	12,221	8.2E-06	<0.01%

TABLE 2-2 Cancer Risk and Noncancer Hazard Estimates for Background Closure Scenario based on Look-up Table Values

Comparative Analysis of the Background and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

				Cancer	and Noncancer Est	imates Calculated b	ased on RME Suburban Reside	ntial Soil RBSL ^a	
			Look-up Table	Composite Resident Soil RBSL	Residential		Compostie Child Resident Soil RBSL	Residential	
Chemical			Values ^b	Cancer (TRL = 10^{-6})	Cancer Risk	Percent	Noncancer (THQ = 1)	Hazard	Percent
Class	Analyte	CAS #	(mg/kg)	(mg/kg)	Estimate	Contribution	(mg/kg)	Quotient	Contribution
SVOC	Di-n-butyl phthalate	84742	0.027	-	-	-	6,110	4.4E-06	<0.01%
SVOC	Di-n-octyl phthalate	117840	0.027	-	-	-	2,444	1.1E-05	<0.01%
SVOC	N-Nitrosodimethylamine	62759	0.01	0.033	3.1E-07	<0.01%	0.49	2.0E-02	0.81%
SVOC	Pentachlorophenol	87865	0.17	21	8.0E-09	<0.01%	230	7.4E-04	<0.01%
SVOC	Phenol	108952	0.17	-	-	-	18,330	9.3E-06	<0.01%
VOCs	2-Hexanone	591786	0.01	-	-	-	170	5.9E-05	<0.01%
VOCs	Acetone	67641	0.02	-	-	-	60,077	3.3E-07	<0.01%
VOCs	cis-1,2-Dichloroethene	156592	0.005	-	-	-	9.2	5.4E-04	<0.01%
VOCs	Ethylbenzene	100414	0.005	2.3	2.2E-09	<0.01%	1,838	2.7E-06	<0.01%
VOCs	Hexachlorobutadiene	87683	0.005	6.7	7.5E-10	<0.01%	61	8.2E-05	<0.01%
VOCs	Methylene chloride	75092	0.01	3.0	3.4E-09	<0.01%	457	2.2E-05	<0.01%
VOCs	Tetrachloroethene	127184	0.005	0.42	1.2E-08	<0.01%	52	9.6E-05	<0.01%
VOCs	Toluene	108883	0.005	-	-	-	513	9.8E-06	<0.01%
VOCs	Trichloroethene	79016	0.005	0.80	6.3E-09	<0.01%	3.0	1.7E-03	<0.01%
VOCs	Vinyl chloride	75014	0.005	0.020	2.4E-07	<0.01%	50	9.9E-05	<0.01%
				Total Cancer Risk:	7E-04		Hazard Index (HI):	3	
			Total withou	t Arsenic and Chromium (VI):	2E-06	Total witho	ut Arsenic and Chromium (VI):	0.4	
Metals	Lead	7439921	42.15				80	0.5	l

-" = None established/not applicable.

B(a)P = Benzo(a)pyrene

DDE = Dichlorodiphenyldichloroetheylene

DDT = Dichlorodiphenyldichloroetheylene

TRL = Target risk level

HQ = Non-cancer effects hazard quotient

THQ = Target HQ

mg/kg = Milligrams per kilogram

PAH = Polycyclic aromatic hydrocarbon

PCB = Polychlorinated Biphenyls

PCDD/PCDF = Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans

RBSL = Risk-based screening level

RME = Reasonable maximum exposure

TCDD = 2,3,7,8-Tetrachlorodibenzo-p-dioxin

B(a)P TEQ = Benzo(a)pyrene toxic equivalency for the 7 carcinogenic PAHs (Benzo(a)pyrene, Benzo(a)anthracene, Benzo(b)fluoranthene,

Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, and Indeno(1,2,3-cd)pyrene)

^a MWH, 2012 (See Table 2-1)

^b Look-up Table values subject to change. DTSC, 2013 (refer to Table 1-1).

TABLE 2-3 Comparison of the Human Health Protectiveness of the Risk-based Cleanup Levels to the Background Cleanup Levels Comparative Analysis of the Background and Risk-Based Cleanup Scenarios. SSFL. Ventura County, California

comparative ranarys.	rative Analysis of the Background and Risk-Based Cleanup Scen			· · ·				T	
			RME Suburban Residential Soil RBSL ^a				Ratio of Cleanup Levels: Risk-		
			Composite Resident Cancer (TRL = 10-6)	Composite Child Resident Noncancer (THQ=1)	Lowest RBSL	Lookup Table Value [LUTV] ^b	based Cleanup Scenario to Background Cleanup Scenario (Lowest RBLSL / LUTV)	Human Health Risk-Management Summary	
Chemical Class	Analyte Arsenic	CAS # 7440382	(mg/kg)	(mg/kg) 2.16E+01	(mg/kg) 6.58E-02	(mg/kg)	0.001		
Metals Metals		18540299	6.58E-02 1.29E+00	2.16E+01 2.34E+02	6.58E-02 1.29E+00	46	0.001	Lookup Table Value is 700 times less conservative than the Lowest RBSL	
Metals	Chromium VI Lead	7439921	1.29E+00	2.34E+02 8.00E+01	1.29E+00 8.00E+01	49	2	Lookup Table Value is 1.5 times less conservative than the Lowest RBSL	
SVOC	Lead N-Nitrosodimethylamine	62759	- 3.25E-02	8.00E+01 4.89E-01	3.25E-02	0.01	3	Lookup Table Value is 1.6 times more conservative than the Lowest RBSL	
VOCs	Vinyl chloride	75014	2.04E-02	4.89E-01 5.05E+01	2.04E-02	0.01	4	Lookup Table Value is 3.3 times more conservative than the Lowest RBSL	
Dioxins	2,3,7,8-TCDD TEQ	DIOXTEQM	4.81E-06	5.05E-05	4.81E-06	0.00000912	5	Lookup Table Value is 5.3 times more conservative than the Lowest RBSL	
PCB	Aroclor 1262	37324235	2.32E-01	1.10E+00	4.81E-06 2.32E-01	0.000000912	7		
PCB	Aroclor 1262 Aroclor 1268	11100144	2.32E-01 2.32E-01	1.10E+00	2.32E-01 2.32E-01	0.033	7	Lookup Table Value is 7 times more conservative than the Lowest RBSL Lookup Table Value is 7 times more conservative than the Lowest RBSL	
PCB	Aroclor 1288 Aroclor 1221	11100144	2.32E-01 2.32E-01	1.10E+00	2.32E-01 2.32E-01	0.033	7	Lookup Table Value is 7 times more conservative than the Lowest RBSL	
#N/A	B(a)P TEQ	PAHTEQM	3.87E-02	1.100+00	3.87E-01	0.00447	9	Lookup Table Value is 8.7 times more conservative than the Lowest RBSL	
PCB	Aroclor 1232	11141165	2.32E-01	1.10E+00	2.32E-01	0.00447	14	Lookup Table Value is 14 times more conservative than the Lowest RBSL	
PCB	Aroclor 1232 Aroclor 1242	53469219	2.32E-01	1.10E+00	2.32E-01	0.017	14	Lookup Table Value is 14 times more conservative than the Lowest RBSL	
PCB	Aroclor 1248	12672296	2.32E-01	1.10E+00	2.32E-01	0.017	14	Lookup Table Value is 14 times more conservative than the Lowest RBSL	
РСВ	Aroclor 1254	11097691	2.32E-01	1.10E+00	2.32E-01	0.017	14	Lookup Table Value is 14 times more conservative than the Lowest RBSL	
PCB	Aroclor 1260	11096825	2.32E-01	1.10E+00	2.32E-01	0.017	14	Lookup Table Value is 14 times more conservative than the Lowest RBSL	
Metals	Copper	7440508	-	3.04E+03	3.04E+03	119	26	Lookup Table Value is 26 times more conservative than the Lowest RBSL	
Metals	Antimony	7440360		2.64E+01	2.64E+01	0.86	31	Lookup Table Value is 20 times more conservative than the Lowest RBSL	
Inorganic	Perchlorate	14797730	-	5.33E+01	5.33E+01	1.63	33	Lookup Table Value is 33 times more conservative than the Lowest RBSL	
Herbicides	MCPA	94746	-	3.43E+01	3.43E+01	0.761	45	Lookup Table Value is 55 times more conservative than the Lowest RBSL	
Metals	Cadmium	7440439	8.44E+02	3.51E+01	3.51E+01	0.7	50	Lookup Table Value is 50 times more conservative than the Lowest RBSL	
Pesticides	Dieldrin	60571	3.69E-02	3.43E+00	3.69E-02	0.00048	77	Lookup Table Value is 57 times more conservative than the Lowest RBSL	
VOCs	Tetrachloroethene	127184	4.16E-01	5.20E+01	4.16E-01	0.005	83	Lookup Table Value is 83 times more conservative than the Lowest RBSL	
Metals	Zinc	7440666	-	2.28E+04	2.28E+04	215	106	Lookup Table Value is 10 times more conservative than the Lowest RBSL	
SVOC	Pentachlorophenol	87865	2.12E+01	2.30E+02	2.12E+01	0.17	125	Lookup Table Value is 120 times more conservative than the Lowest RBSL	
Pesticides	4,4'-DDT	50293	1.74E+00	3.43E+01	1.74E+00	0.013	134	Lookup Table Value is 130 times more conservative than the Lowest RBSL	
VOCs	Trichloroethene	79016	7.97E-01	2.99E+00	7.97E-01	0.005	159	Lookup Table Value is 160 times more conservative than the Lowest RBSL	
Herbicides	MCPP	93652	-	6.86E+01	6.86E+01	0.371	185	Lookup Table Value is 180 times more conservative than the Lowest RBSL	
Pesticides	4,4'-DDE	72559	1.74E+00	-	1.74E+00	0.0086	202	Lookup Table Value is 200 times more conservative than the Lowest RBSL	
PCB	Aroclor 1016	12674112	6.63E+00	3.86E+00	3.86E+00	0.017	227	Lookup Table Value is 230 times more conservative than the Lowest RBSL	
Pesticides	Chlordane	57749	1.69E+00	3.43E+01	1.69E+00	0.007	241	Lookup Table Value is 240 times more conservative than the Lowest RBSL	
VOCs	Methylene chloride	75092	2.97E+00	4.57E+02	2.97E+00	0.01	297	Lookup Table Value is 300 times more conservative than the Lowest RBSL	
Metals	Mercury	7439976	-	1.68E+01	1.68E+01	0.05	335	Lookup Table Value is 340 times more conservative than the Lowest RBSL	
VOCs	Ethylbenzene	100414	2.31E+00	1.84E+03	2.31E+00	0.005	463	Lookup Table Value is 460 times more conservative than the Lowest RBSL	
PAHs	1-Methyl naphthalene	90120	7.29E+00	2.85E+03	7.29E+00	0.01	729	Lookup Table Value is 730 times more conservative than the Lowest RBSL	
Metals	Silver	7440224	-	2.30E+02	2.30E+02	0.2	1,150	Lookup Table Value is 1200 times more conservative than the Lowest RBSL	
VOCs	Hexachlorobutadiene	87683	6.67E+00	6.11E+01	6.67E+00	0.005	1,334	Lookup Table Value is 1300 times more conservative than the Lowest RBSL	
VOCs	cis-1,2-Dichloroethene	156592	-	9.22E+00	9.22E+00	0.005	1,845	Lookup Table Value is 1800 times more conservative than the Lowest RBSL	
Inorganic	Cyanide	57125	-	1.52E+03	1.52E+03	0.6	2,536	Lookup Table Value is 2500 times more conservative than the Lowest RBSL	
SVOC	Butyl benzyl phthalate	85687	2.74E+02	1.22E+04	2.74E+02	0.1	2,738	Lookup Table Value is 2700 times more conservative than the Lowest RBSL	
SVOC	bis(2-Ethylhexyl) phthalate	117817	1.73E+02	1.22E+03	1.73E+02	0.061	2,842	Lookup Table Value is 2800 times more conservative than the Lowest RBSL	
PAHs	Naphthalene	91203	1.46E+01	6.81E+02	1.46E+01	0.0036	4,050	Lookup Table Value is 4100 times more conservative than the Lowest RBSL	
Formaldehyde	Formaldehyde	50000	5.91E+05	1.22E+04	1.22E+04	1.87	6,530	Lookup Table Value is 6500 times more conservative than the Lowest RBSL	
PAHs	2-Methylnaphthalene	91576	-	1.62E+02	1.62E+02	0.01	16,216	Lookup Table Value is 16000 times more conservative than the Lowest RBSL	
VOCs	2-Hexanone	591786	-	1.70E+02	1.70E+02	0.01	17,033	Lookup Table Value is 17000 times more conservative than the Lowest RBSL	
SVOC	Di-n-octyl phthalate	117840	-	2.44E+03	2.44E+03	0.027	90,525	Lookup Table Value is 91000 times more conservative than the Lowest RBSL	
VOCs	Toluene	108883	-	5.13E+02	5.13E+02	0.005	102,520	Lookup Table Value is 100000 times more conservative than the Lowest RBSL	
SVOC	Phenol	108952	-	1.83E+04	1.83E+04	0.17	107,825	Lookup Table Value is 110000 times more conservative than the Lowest RBSL	
SVOC	Di-n-butyl phthalate	84742	-	6.11E+03	6.11E+03	0.027	226,312	Lookup Table Value is 230000 times more conservative than the Lowest RBSL	
Herbicides	Dichloroprop	120365	-	6.86E+02	6.86E+02	0.0024	285,867	Lookup Table Value is 290000 times more conservative than the Lowest RBSL	
PAHs	Pyrene	129000	-	1.65E+03	1.65E+03	0.0056	295,071	Lookup Table Value is 300000 times more conservative than the Lowest RBSL	
SVOC	Benzoic acid	65850	-	2.44E+05	2.44E+05	0.66	370,328	Lookup Table Value is 370000 times more conservative than the Lowest RBSL	
PAHs	Fluoranthene	206440	-	2.20E+03	2.20E+03	0.0052	423,691	Lookup Table Value is 420000 times more conservative than the Lowest RBSL	
PAHs	Fluorene	86737	-	2.18E+03	2.18E+03	0.0038	572,930	Lookup Table Value is 570000 times more conservative than the Lowest RBSL	
PAHs	Benzo(ghi)perylene	191242	-	1.65E+03	1.65E+03	0.0025	660,958	Lookup Table Value is 660000 times more conservative than the Lowest RBSL	

TABLE 2-3 Comparison of the Human Health Protectiveness of the Risk-based Cleanup Levels to the Background Cleanup Levels Comparative Analysis of the Background and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

			RME Subu	rban Residential Soil RBSL ^a			Ratio of Cleanup Levels: Risk-		
Chemical Class	Analyte	CAS #	Composite Resident Cancer (TRL = 10-6) (mg/kg)	Composite Child Resident Noncancer (THQ=1) (mg/kg)	Lowest RBSL (mg/kg)	Lookup Table Value [LUTV] ^b (mg/kg)	based Cleanup Scenario to Background Cleanup Scenario (Lowest RBLSL / LUTV)	Human Health Risk-Management Summary	
AHs	Acenaphthylene	208968	-	2.98E+03	2.98E+03	0.0025	1,191,150	Lookup Table Value is 1200000 times more conservative than the Lowest RBSL	
PAHs	Acenaphthene	83329	-	3.23E+03	3.23E+03	0.0025	1,290,292	Lookup Table Value is 1300000 times more conservative than the Lowest RBSL	
/OCs	Acetone	67641	-	6.01E+04	6.01E+04	0.02	3,003,863	Lookup Table Value is 3000000 times more conservative than the Lowest RBSL	
PAHs	Phenanthrene	85018	-	1.64E+04	1.64E+04	0.0039	4,214,523	Lookup Table Value is 4200000 times more conservative than the Lowest RBSL	
AHs	Anthracene	120127	-	1.64E+04	1.64E+04	0.0025	6,571,078	Lookup Table Value is 6600000 times more conservative than the Lowest RBSL	
	rene toxic equivalency for the 7 car Chrysene, Dibenz(a,h)anthracene, a	· ·	()))	acene, Benzo(b)fluoranthene	s,				

TABLE 2-4 Chemicals of Concern Summary for Average Soil (0 to 10 feet bgs) Concentrations - Risk-based Cleanup Scenario Comparative Analysis of the Background and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

				Calculated	based on RME Sub	ourban Residential Soil RBSL ^a		
Chemical Class	Analyte	CAS #	Exposure Point Concentration ^b (mg/kg)	Composite Resident RBSL Cancer (10 ⁻⁶) (mg/kg)	Residential Cancer Risk Estimate	Child RBSL Noncancer (HQ=1) (mg/kg)	Residential Hazard Index	Contaminant of Concern
Dioxins	2,3,7,8-TCDD TEQ	DIOXTEQM	0.012	4.81E-06	2.49E-03	5.05E-05	2.37E+02	Yes
Formaldehyde	Formaldehyde	50000	2.9	590,952	4.97E-12	12,210	2.40E-04	No
Herbicides	Dichlorprop	120365	N/A	-	-	686	-	N/A
Herbicides	MCPA	94746	N/A	-	-	34	-	N/A
Herbicides	MCPP	93652	N/A	-	-	69	-	N/A
Inorganic	Cyanide	57125	N/A	-	-	1,522	-	N/A
Inorganic	Perchlorate	14797730	N/A	-	-	53	-	N/A
Metals	Antimony	7440360	1.0	-	-	26	3.83E-02	No
Metals	Arsenic	7440382	5.4	0.066	8.17E-05	22	2.49E-01	Yes
Metals	Cadmium	7440439	0.55	844	6.46E-10	35	1.55E-02	No
Metals	Chromium VI	18540299	0.53	1.3	4.10E-07	234	2.26E-03	No
Metals	Copper	7440508	21	-	4.102-07	3,043	6.93E-03	No
Wietais		7440308	21	-	-	5,045	0.932-03	NO
Metals	Mercury	7439976	0.058	-	-	17	3.44E-03	No
Metals	Silver	7440224	1.4	-	-	230	6.30E-03	No
Metals	Zinc	7440666	84	-	-	22,825	3.69E-03	No
PAHs	1-Methyl naphthalene	90120	0.026	7.3	3.61E-09	2,846	9.25E-06	No
PAHs	2-Methylnaphthalene	91576	0.096	-	-	162	5.95E-04	No
PAHs	Acenaphthene	83329	0.079	-	-	3,226	2.45E-05	No
PAHs	Acenaphthylene	208968	0.074	-	-	2,978	2.49E-05	No
PAHs	Anthracene	120127	0.085	-	-	16,428	5.20E-06	No
PAHs	B(a)P TEQ	PAHTEQM	0.039	0.039	1.00E-06	-	-	Yes
PAHs	Benzo(ghi)perylene	191242	0.087	-	-	1,652	5.26E-05	No
PAHs	Fluoranthene	206440	0.15	-	-	2,203	6.76E-05	No
PAHs	Fluorene	86737	0.078	-	-	2,177	3.59E-05	No
PAHs	Naphthalene	91203	0.076	15	5.24E-09	681	1.12E-04	No
PAHs	Phenanthrene	85018	0.13	-	-	16,437	7.61E-06	No
PAHs	Pyrene	129000	0.15	-	-	1,652	9.22E-05	No
PCB	Aroclor 1016	12674112	0.060	6.6	9.02E-09	3.9	1.55E-02	No
PCB	Aroclor 1221	11104282	N/A	0.23	-	1.1	-	N/A
PCB	Aroclor 1232	11141165	N/A	0.23	-	1.1	-	N/A
PCB	Aroclor 1242	53469219	0.058	0.23	2.51E-07	1.1	5.29E-02	No
PCB	Aroclor 1248	12672296	0.062	0.23	2.65E-07	1.1	5.59E-02	No
РСВ	Aroclor 1254	11097691	0.082	0.23	3.51E-07	1.1	7.40E-02	No
PCB	Aroclor 1260	11096825	0.11	0.23	4.91E-07	1.1	1.03E-01	No
РСВ	Aroclor 1262	37324235	N/A	0.23	-	1.1	-	N/A
PCB	Aroclor 1268	11100144	N/A	0.23	-	1.1	-	N/A
Pesticides	4,4'-DDE	72559	0.037	1.7	2.11E-08	-	-	No
Pesticides	4,4'-DDT	50293	0.039	1.7	2.24E-08	34	1.14E-03	No
Pesticides	Chlordane	57749	0.0090	1.7	5.32E-09	34	2.62E-04	No
Pesticides	Dieldrin	60571	0.037	0.037	9.89E-07	3.4	1.06E-02	No

TABLE 2-4 Chemicals of Concern Summary for Average Soil (0 to 10 feet bgs) Concentrations - Risk-based Cleanup Scenario

Comparative Analysis of the Background and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

				Calculated	based on RME Sub	urban Residential Soil RBSL ^a	1	_
Chemical Class	Analyte	CAS #	Exposure Point Concentration ^b (mg/kg)	Composite Resident RBSL Cancer (10 ⁻⁶) (mg/kg)	Residential Cancer Risk Estimate	Child RBSL Noncancer (HQ=1) (mg/kg)	Residential Hazard Index	Contaminant of Concern
SVOC	Benzoic acid	65850	0.69	-	-	244,417	2.81E-06	No
SVOC	bis(2-Ethylhexyl) phthalate	117817	0.17	173	1.00E-09	1,222	1.42E-04	No
SVOC	Butyl benzyl phthalate	85687	0.15	274	5.31E-10	12,221	1.19E-05	No
SVOC	Di-n-butyl phthalate	84742	0.32	-	-	6,110	5.25E-05	No
SVOC	Di-n-octyl phthalate	117840	0.14	-	-	2,444	5.91E-05	No
SVOC	N-Nitrosodimethylamine	62759	0.17	0.033	5.25E-06	0.49	3.49E-01	Yes
SVOC	Pentachlorophenol	87865	0.89	21	4.18E-08	230	3.86E-03	No
SVOC	Phenol	108952	0.46	-	-	18,330	2.51E-05	No
VOCs	2-Hexanone	591786	0.014	-	-	170	8.39E-05	No
VOCs	Acetone	67641	0.37	-	-	60,077	6.21E-06	No
VOCs	cis-1,2-Dichloroethene	156592	0.041	-	-	9.2	4.50E-03	No
VOCs	Ethylbenzene	100414	0.030	2.3	1.28E-08	1,838	1.61E-05	No
VOCs	Hexachlorobutadiene	87683	N/A	6.7	-	61	-	N/A
VOCs	Methylene chloride	75092	0.12	3.0	4.15E-08	457	2.70E-04	No
VOCs	Tetrachloroethene	127184	0.031	0.42	7.41E-08	52	5.93E-04	No
VOCs	Toluene	108883	0.029	-	-	513	5.67E-05	No
VOCs	Trichloroethene	79016	0.29	0.80	3.67E-07	3.0	9.79E-02	No
VOCs	Vinyl chloride	75014	0.058	0.020	2.86E-06	50	1.16E-03	Yes
	-			Total:	3E-03		1	
				Total without Arsenic:	3E-03		1	
Metals	Lead	7439921	18			80	2.67E-01	

Notes:

'-' = None established/not applicable.

B(a)P = Benzo(a)pyrene

B(a)P TEQ = Benzo(a)pryene toxic equivalency for the 7 carcinogenic PAHs (Benzo(a)pyrene, Benzo(a)anthracene, Benzo(b)fluoranthene,

Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, and Indeno(1,2,3-cd)pyrene)

DDE = Dichlorodiphenyldichloroetheylene

DDT = Dichlorodiphenyldichloroetheylene

HQ = Hazard quotient

mg/kg = Milligrams per kilogram

N/A = Chemicals was not detected or was not analyzed.

PAH = Polycyclic aromatic hydrocarbon

PCB = Polychlorinated biphenyl

PCDD/PCDF = Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans

RBSL = Risk-based screening level

RME = Reasonable maximum exposure

SVOC = Semivolatile organic compound

TCDD = 2,3,7,8-Tetrachlorodibenzo-p-dioxin

VOCs = Volatile organic compound

^a MWH, 2012 (See Table 2-1)

^b EPC based on average concentration for 0 to 10 feet below ground surface (bgs) soil at NASA sites using one-half reporting limit for the non-detects.

^c Chemical of concerns are based on chemicals with average soil concentrations greater than the RBSL.

TABLE 2-5 Risk Summary for Soil COCs - Background Cleanup Scenario vs Risk-based Cleanup Scenario

Comparative Analysis of the Backgorund and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

Comparative Analy	nparative Analysis of the Background and Risk-Based Cleanup Scenari			Exposure Point Con	centration	Risk for COCs								
				Risk-based Sci	reening Level ^b		Cancer Risk Es	stimate		Non-cancer HQ	Estimate			
			Look-up Table	Cancer Effects	Non-Cancer	Background Cleanup	Risk-based Cleanup	Ratio of Risk-based Cleanup Scenario to Background	Background Cleanup	Risk-based Cleanup	Ratio of Risk-based Cleanup Scenario to Backaround			
Chemical Class	Analyte	CAS #	Values ^a	RBSL	Effects RBSL	Scenario ^{c,d}	Scenario ^{c,e}	Cleanup Scenario	Scenario ^{c,d}	Scenario ^{c,e}	Cleanup Scenario			
Dioxins	2,3,7,8-TCDD TEQ	DIOXTEQM	0.0000	4.8E-06	5.1E-05	2E-07	1.E-06	5.3	1.8E-02	1	55			
Metals	Arsenic	7440382	46.0000	0.066	22	7E-04	1.E-06	0.0014	2.1E+00	1	0.47			
PAHs	B(a)P TEQ	PAHTEQM	0.0045	0.039	-	1E-07	1.E-06	8.7	-	-	-			
SVOC	N-Nitrosodimethylamine	62759	0.0100	0.033	0.49	3E-07	1.E-06	3.3	2.0E-02	1	49			
VOCs	Vinyl chloride	75014	0.0050	0.020	50	2E-07	1.E-06	4.1	9.9E-05	1	10,091			
		Total:				7E-04	5E-06	0.007	2	4	1.8			
	To	tal without Arsenic:				9E-07	4E-06	5	0.04	3	78			

Notes:

B(a)P = Benzo(a)pyrene

B(a)P TEQ = Benzo(a)pyrene toxic equivalency for the 7 carcinogenic PAHs (Benzo(a)pyrene, Benzo(a)anthracene, Benzo(b)fluoranthene,

PAHs (Benzo(a)pyrene, Benzo(a)anthracene, Benzo(b)filloranthen Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, and

Benzo(k)nuorantnene, Chrysene, Dibenz(a,n)anthracene

Indeno(1,2,3-cd)pyrene)

COC = Contaminant of concern

DDE = Dichlorodiphenyldichloroetheylene

"-- : Not a COPC. Exposure point concentration is less than the RBSL. ^a Look-up Table values subject to change. DTSC, 2013 (See Table 1-1).

^b MWH, 2012 (See Table 2-1)

^c COCs identified based on average soil (0 to 10 feet bgs) concentration (detect) exceeding the RBSL.

^d Cancer risk estimate calculated using the LUTV as the exposure point concentration and the cancer-effects RBSL. Non-cancer hazard estimate calculated using the LUTV as the exposure point concentration and the non-cancer-effects RBSL.

DDT = Dichlorodiphenyldichloroetheylene

PAH = Polycyclic aromatic hydrocarbon

SVOC = Semivolatile organic compound

TCDD = 2,3,7,8-Tetrachlorodibenzo-p-dioxin

PCB = Polychlorinated biphenyl

RBSL = Risk-based screening level

VOCs = Volatile organic compound

e Cancer risk estimate calculated using the RBSL as the exposure point concentration and the cancer-effects RBSL. Non-cancer hazard estimate calculated using the RBSL as the exposure point concentration and the non-cancer-effects RBSL.

TABLE 3-1 Ecological Risk-based Screening Levels

Comparative Analysis of the Background and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

Chemical	Analyte	Ecological R	Ecological RBSLs (mg/kg) ^a				
Class	Analyte	No Effect Level	Low Effect Level				
VOCs	Acetone	46	230				
/OCs	cis-1,2-Dichloroethene	210	220				
/OCs	Ethylbenzene	79	240				
/OCs	Hexachlorobutadiene	0.02	0.11				
/OCs	2-Hexanone	23	170				
/OCs	Methylene chloride	27	230				
/OCs	Tetrachloroethene	2	11				
/OCs	Toluene	59	590				
/OCs	Trichloroethene	1.8	18				
/OCs	Vinyl chloride	0.8	8				
PAHs	1-Methyl naphthalene	52	260				
PAHs	2-Methylnaphthalene	53	260				
PAHs	Acenaphthene	3	31				
PAHs	Acenaphthylene	0.3	3.3				
PAHs	Anthracene	2.8	28				
PAHs	Benzo(a)pyrene	3.1	190				
PAHs	Benzo(ghi)perylene	4.1	220				
PAHs	Fluoranthene	54	880				
PAHs	Fluorene	1.9	19				
PAHs	Naphthalene	26	130				
PAHs	Phenanthrene	1.3	130				
PAHs	Pyrene	1.2	73				
SVOC	bis(2-Ethylhexyl) phthalate	0.3	65				
SVOC	Di-n-butyl phthalate	0.1	1.1				
SVOC		13	1.1				
	Di-n-octyl phthalate Benzoic acid		45				
SVOC		4.5					
SVOC	Butyl benzyl phthalate Pentachlorophenol	90	260 10				
SVOC	Phenol						
SVOC		5.1	51				
SVOC	N-Nitrosodimethylamine	6.5	79				
Formaldehyde	Formaldehyde	43,000	380,000				
PCB	Aroclor 1016	0.12	1.2				
PCB	Aroclor 1221	0.18	1.8				
PCB	Aroclor 1232	0.082	0.82				
PCB	Aroclor 1242	0.043	0.43				
PCB	Aroclor 1248	0.0064	0.064				
PCB	Aroclor 1254	0.039	0.39				
PCB	Aroclor 1260	0.025	0.25				
PCB	Aroclor 1262						
PCB	Aroclor 1268						
Vietals	Antimony	0.042	2				
Aetals	Arsenic	2.1	31				
Vietals	Cadmium	0.019	0.81				
Metals	Chromium VI	7.3	30				
Vetals	Copper	1.1	24				
Vetals	Lead	0.018	39				
Vetals	Mercury	0.87	1.7				
Metals	Silver	0.99	29				

TABLE 3-1 Ecological Risk-based Screening Levels

Comparative Analysis of the Background and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

Chemical	Analyte	Ecological RBSLs (mg/kg) ^a					
Class	Analyte	No Effect Level	Low Effect Level				
Metals	Zinc	19	320				
Cyanide	Cyanide	0.18	1.8				
Inorganic	Perchlorate	0.5	7.7				
Pesticides	4,4'-DDE	0.0041	0.28				
Pesticides	4,4'-DDT	0.0035	0.58				
Pesticides	Chlordane	1.1	5.6				
Pesticides	Dieldrin	0.013	0.58				
Herbicides	Dichloroprop	0.79	3.9				
Herbicides	МСРА	0.12	0.61				
Herbicides	МСРР	2.5	7.4				
Dioxins	2,3,7,8-TCDD TEQ	0.0000005	0.000005				

Notes:

DDE = Dichlorodiphenyldichloroetheylene

DDT = Dichlorodiphenyldichloroetheylene

PAH = Polycyclic aromatic hydrocarbon

PCB = Polychlorinated biphenyl

SVOC = Semivolatile organic compound

RBSL = Risk-based screening level

VOCs = Volatile organic compound

^{a:} MWH Americas, Inc. (MWH). 2011. Ecological Risk-Based Screening Levels for Use in Ecological Risk Assessments at the Santa Susana Field Laboratory, Ventura County, California.

TABLE 3-2	
Ecological Hazard Quotients for Background Closure Scenario based on Look-up Table Values	

Comparative Analy	of the Backaround and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California	

Chemical	Analuta	CAS #	Look-up Table	Ecological Sc	oil RBSL (mg/kg)	Hazard Quotients		
Class	Analyte	CAS #	Values ^b (mg/kg)	No Effect	Low Effect	No Effect	Low Effect	
Dioxins	2,3,7,8-TCDD TEQ	DIOXTEQM	0.00000912	0.0000005	0.000005	1.82E+00	1.82E-01	
ormaldehyde	Formaldehyde	50000	1.87	43000	380000	4.35E-05	4.92E-06	
lerbicides	DichlorOprop	120365	0.0024	0.79	3.9	3.04E-03	6.15E-04	
lerbicides	MCPA	94746	0.761	0.12	0.61	6.34E+00	1.25E+00	
lerbicides	MCPP	93652	0.371	2.5	7.4	1.48E-01	5.01E-02	
norganic	Cyanide	57125	0.6	0.18	1.8	3.33E+00	3.33E-01	
norganic	Perchlorate	14797730	1.63	0.5	7.7	3.26E+00	2.12E-01	
vletals	Antimony	7440360	0.86	0.042	2	2.05E+01	4.30E-01	
Vietals	Arsenic	7440382	46	2.1	31	2.19E+01	1.48E+00	
Vetals	Cadmium	7440439	0.7	0.019	0.81	3.68E+01	8.64E-01	
Vetals	Chromium VI	18540299	2	7.3	30	2.74E-01	6.67E-02	
Vietals	Copper	7440508	119	1.1	24	1.08E+02	4.96E+00	
vetals	Lead	7439921	49	0.018	39	2.72E+03	1.26E+00	
vletals	Mercury	7439976	0.05	0.87	1.7	5.75E-02	2.94E-02	
Vietals	Silver	7440224	0.2	0.99	29	2.02E-01	6.90E-03	
∕letals	Zinc	7440666	215	19	320	1.13E+01	6.72E-01	
PAHs	1-Methyl naphthalene	90120	0.01	52	260	1.92E-04	3.85E-05	
PAHs	2-Methylnaphthalene	91576	0.01	53	260	1.89E-04	3.85E-05	
PAHs	Acenaphthene	83329	0.0025	3.1	31	8.06E-04	8.06E-05	
PAHs	Acenaphthylene	208968	0.0025	0.33	3.3	7.58E-03	7.58E-04	
PAHs	Anthracene	120127	0.0025	2.8	28	8.93E-04	8.93E-05	
PAHs	Benzo(a)pyrene	50328	0.0023	3.1	190	7.42E-04	1.21E-05	
PAHs	Benzo(ghi)perylene	191242	0.0025	4.1	220	6.10E-04	1.14E-05	
PAHs	Fluoranthene	206440	0.0052	54	880	9.63E-05	5.91E-06	
PAHs	Fluorene	86737	0.0038	1.9	19	2.00E-03	2.00E-04	
PAHs	Naphthalene	91203	0.0036	26	130	1.38E-04	2.77E-05	
PAHs	Phenanthrene	85018	0.0039	1.3	13	3.00E-03	3.00E-04	
PAHs	Pyrene	129000	0.0056	1.2	73	4.67E-03	7.67E-05	
РСВ	Aroclor 1016	12674112	0.017	0.12	1.2	1.42E-01	1.42E-02	
РСВ	Aroclor 1221	11104282	0.033	0.18	1.8	1.83E-01	1.83E-02	
РСВ	Aroclor 1232	11141165	0.017	0.082	0.82	2.07E-01	2.07E-02	
РСВ	Aroclor 1242	53469219	0.017	0.043	0.43	3.95E-01	3.95E-02	
РСВ	Aroclor 1248	12672296	0.017	0.0064	0.064	2.66E+00	2.66E-01	
РСВ	Aroclor 1254	11097691	0.017	0.039	0.39	4.36E-01	4.36E-02	
РСВ	Aroclor 1260	11096825	0.017	0.025	0.25	6.80E-01	6.80E-02	
РСВ	Aroclor 1262	37324235	0.033					
РСВ	Aroclor 1268	11100144	0.033					
Pesticides	4,4'-DDE	72559	0.0086	0.0041	0.28	2.10E+00	3.07E-02	
Pesticides	4,4'-DDT	50293	0.013	0.0035	0.58	3.71E+00	2.24E-02	
Pesticides	Chlordane	57749	0.007	1.1	5.6	6.36E-03	1.25E-03	
Pesticides	Dieldrin	60571	0.00048	0.013	0.58	3.69E-02	8.28E-04	
SVOC	Benzoic acid	65850	0.66	4.5	45	1.47E-01	1.47E-02	
SVOC	bis(2-Ethylhexyl) phthalate	117817	0.061	0.32	65	1.91E-01	9.38E-04	
SVOC	Butyl benzyl phthalate	85687	0.1	90	260	1.11E-03	3.85E-04	
SVOC	Di-n-butyl phthalate	84742	0.027	0.11	1.1	2.45E-01	2.45E-02	
SVOC	Di-n-octyl phthalate	117840	0.027	13	130	2.08E-03	2.08E-04	
SVOC	N-Nitrosodimethylamine	62759	0.01	6.5	79	1.54E-03	1.27E-04	
WOC SVOC	Pentachlorophenol	87865	0.17	2.8	10	6.07E-02	1.70E-02	
SVOC	Phenol	108952	0.17	5.1	51	3.33E-02	3.33E-03	
/OCs	2-Hexanone	591786	0.01	23	170	4.35E-04	5.88E-05	
/OCs	Acetone	67641	0.01	46	230	4.35E-04	8.70E-05	
/OCs	cis-1,2-Dichloroethene	156592	0.02	210	230	2.38E-05	2.27E-05	
	Ethylbenzene	100414						
/OCs			0.005	79	240	6.33E-05	2.08E-05	
/OCs	Hexachlorobutadiene	87683	0.005	0.022	0.11	2.27E-01	4.55E-02	
/OCs	Methylene chloride	75092	0.01	27	230	3.70E-04	4.35E-05	

TABLE 3-2 **Ecological Hazard Quotients for Background Closure Scenario based on Look-up Table Values** Comparative Analysis of the Background and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

Chemical	A we had a	645 #	Look-up Table	Ecological Sc	oil RBSL (mg/kg)	Hazard Quotients		
Class	Analyte	CAS #	Values ^b (mg/kg)	No Effect	Low Effect	No Effect	Low Effect	
/OCs	Toluene	108883	0.005	59	590	8.47E-05	8.47E-06	
/OCs	Trichloroethene	79016	0.005	1.8	18	2.78E-03	2.78E-04	
/OCs	Vinyl chloride	75014	0.005	0.78	7.8	6.41E-03	6.41E-04	
DDE = Dichloro	blished/not applicable. diphenyldichloroetheylene diphenyldichloroetheylene Jotient							
	ams per kilogram c aromatic hydrocarbon							
PCB = Polychlo	rinated biphenyl							
PCDD/PCDF = F	olychlorinated dibenzo-p-dioxins an	d polychlorinated dib	enzofurans					
RBSL = Risk-bas	ed Screening level							
RME = Reasona	ble maximum exposure							
rcdd = 2,3,7,8-	-Tetrachlorodibenzo-p-dioxin							
EQ = Toxic eq	uivalency							
Ed Tomberg								
'MWH, 2012 (See Table 1-1)							

This page intentionally left blank.

TABLE 3-3 **Comparison of the Ecological Protectiveness of the Risk-based Cleanup Levels to the Background Cleanup Levels** *Comparative Analysis of the Background and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California*

Ratio of Cleanup Levels (RBSL/LUTV) Ecological RBSL (mg/kg)^a Lookup Table

		66 6 <i>1</i>			Value (LUTV) ^b				
Chemical Class	Analyte	CAS # 57125	No Effect	Low Effect 1.8	(mg/kg)	No Effect 0.30	Low Effect	<i>No Effect</i> LUTV is 3.3 times less conservative than the No Effect RBSL	Low Effect LUTV is 3 times more conservative than the Low Effect RBSL
-	Cyanide Perchlorate	14797730	0.18	7.7	0.6 1.63		3.0 5		
ě	Formaldehyde	50000	43000	380000	1.87	0.3 22995	203209	LUTV is 3.3 times less conservative than the No Effect RBSL LUTV is 23000 times more conservative than the No Effect RBSL	LUTV is 4.7 times more conservative than the Low Effect RBSL LUTV is 200000 times more conservative than the Low Effect RBSL
,	MCPA	94746	0.12	0.61	0.761	0.16	0.80	LUTV is 6.3 times less conservative than the No Effect RBSL	LUTV is 1.2 times less conservative than the Low Effect RBSL
	MCPP	93652	2.5	7.4	0.371	6.74	20	LUTV is 6.7 times more conservative than the No Effect RBSL	LUTV is 20 times more conservative than the Low Effect RBSL
	Dichloroprop	120365	0.79	3.9	0.0024	329	1625	LUTV is 330 times more conservative than the No Effect RBSL	LUTV is 1600 times more conservative than the Low Effect RBSL
etals	Arsenic	7440382	2.1	3.5	46	0.05	0.67	LUTV is 22 times less conservative than the No Effect RBSL	LUTV is 1.5 times less conservative than the Low Effect RBSL
etals	Chromium VI	18540299	7.3	30	2	3.65	15	LUTV is 3.7 times more conservative than the No Effect RBSL	LUTV is 15 times more conservative than the Low Effect RBSL
etals	Lead	7439921	0.018	39	49	0.00	0.80	LUTV is 2700 times less conservative than the No Effect RBSL	LUTV is 1.3 times less conservative than the Low Effect RBSL
tals	Copper	7440508	1.1	24	119	0.00	0.20	LUTV is 110 times less conservative than the No Effect RBSL	LUTV is 5 times less conservative than the Low Effect RBSL
	Antimony	7440360	0.042	24	0.86	0.01	2.33	LUTV is 20 times less conservative than the No Effect RBSL	LUTV is 2.3 times more conservative than the Low Effect RBSL
etals	Cadmium	7440439	0.042	0.81	0.7	0.03	1.16	LUTV is 37 times less conservative than the No Effect RBSL	LUTV is 1.2 times more conservative than the Low Effect RBSL
	Zinc	7440666	19	320	215	0.03	1.49	LUTV is 11 times less conservative than the No Effect RBSL	LUTV is 1.5 times more conservative than the Low Effect RBSL
	Mercury	7439976	0.87	1.7	0.05	17.40	34	LUTV is 17 times more conservative than the No Effect RBSL	LUTV is 34 times more conservative than the Low Effect RBSL
	Silver	7439970	0.87	29	0.03	4.95	145	LUTV is 5 times more conservative than the No Effect RBSL	LUTV is 150 times more conservative than the Low Effect RBSL
Hs	1-Methyl naphthalene	90120	52	29	0.01	4.95 5200.00	26000	LUTV is 5200 times more conservative than the No Effect RBSL	LUTV is 26000 times more conservative than the Low Effect RBSL
	Naphthalene	9120	26	130	0.001	7222	36111	LUTV is 7200 times more conservative than the No Effect RBSL	LUTV is 36000 times more conservative than the Low Effect RBSL
HS HS	2-Methylnaphthalene	91203	53	260	0.0036	5300	26000	LUTV is 5200 times more conservative than the No Effect RBSL	LUTV is 26000 times more conservative than the Low Effect RBSL
Hs	Pyrene	129000	1.2	73	0.001	214	13036	LUTV is 210 times more conservative than the No Effect RBSL	LUTV is 13000 times more conservative than the Low Effect RBSL
Hs Hs	Fluoranthene	206440	54	73 880	0.0058	10385	169231	LUTV is 10000 times more conservative than the No Effect RBSL	LUTV is 170000 times more conservative than the Low Effect RBSL
Hs	Fluorene	86737	1.9	19	0.0032	500	5000	LUTV is 500 times more conservative than the No Effect RBSL	LUTV is 5000 times more conservative than the Low Effect RBSL
	Benzo(a)pyrene	50328	3.1	19	0.0038	1348	82609	LUTV is 1300 times more conservative than the No Effect RBSL	
	Benzo(ghi)perylene	191242	4.1	220	0.0025	1548	82009	LUTV is 1600 times more conservative than the No Effect RBSL	LUTV is 88000 times more conservative than the Low Effect RBSL
	Acenaphthylene	208968	0.33	3.3	0.0025	132	1320	LUTV is 130 times more conservative than the No Effect RBSL	LUTV is 38000 times more conservative than the Low Effect RBSL
	Acenaphthene	83329	3.1	3.5	0.0025	132	12400	LUTV is 1200 times more conservative than the No Effect RBSL	LUTV is 12000 times more conservative than the Low Effect RBSL
	Phenanthrene	85018	1.3	13	0.0023	333	3333	LUTV is 330 times more conservative than the No Effect RBSL	LUTV is 32000 times more conservative than the Low Effect RBSL
Hs	Anthracene	120127	2.8	28	0.0039	1120	11200	LUTV is 1100 times more conservative than the No Effect RBSL	LUTV is 11000 times more conservative than the Low Effect RBSL
В	Aroclor 1262	37324235			0.033			No RBSLs	No RBSLs
B	Aroclor 1268	11100144			0.033			No RBSLs	No RBSLs
B	Aroclor 1208	11104282	0.18	1.8	0.033	5.45	55	LUTV is 5.5 times more conservative than the No Effect RBSL	LUTV is 55 times more conservative than the Low Effect RBSL
B	Aroclor 1221 Aroclor 1232	11141165	0.18	0.82	0.033	4.82	48	LUTV is 4.8 times more conservative than the No Effect RBSL	LUTV is 48 times more conservative than the Low Effect RBSL
B	Aroclor 1232 Aroclor 1242	53469219	0.082	0.82	0.017	2.53	25	LUTV is 2.5 times more conservative than the No Effect RBSL	LUTV is 48 times more conservative than the Low Effect RBSL
B	Aroclor 1242 Aroclor 1248	12672296	0.043	0.43	0.017	0.38	3.76	LUTV is 2.7 times less conservative than the No Effect RBSL	LUTV is 2.8 times more conservative than the Low Effect RBSL
	Aroclor 1248 Aroclor 1254	11097691	0.0004	0.39	0.017	2.29	23	LUTV is 2.3 times more conservative than the No Effect RBSL	LUTV is 23 times more conservative than the Low Effect RBSL
	Aroclor 1254 Aroclor 1260	11097691	0.039	0.39	0.017	1.47	15	LUTV is 1.5 times more conservative than the No Effect RBSL	LUTV is 25 times more conservative than the Low Effect RBSL
	Aroclor 1200	12674112	0.025	1.2	0.017	7.06	71	LUTV is 7.1 times more conservative than the No Effect RBSL	LUTV is 71 times more conservative than the Low Effect RBSL
	Dieldrin	60571	0.12	0.58	0.00048	27.08	1208	LUTV is 27 times more conservative than the No Effect RBSL	LUTV is 1200 times more conservative than the Low Effect RBSL
	4,4'-DDT	50293	0.0035	0.58	0.013	0.27	45	LUTV is 3.7 times less conservative than the No Effect RBSL	LUTV is 45 times more conservative than the Low Effect RBSL
	4,4'-DDE	72559	0.0033	0.38	0.013	0.27	33	LUTV is 2.1 times less conservative than the No Effect RBSL	LUTV is 43 times more conservative than the Low Effect RBSL
	Chlordane	57749	1.1	5.6	0.007	157.14	800	LUTV is 160 times more conservative than the No Effect RBSL	LUTV is 800 times more conservative than the Low Effect RBSL
	N-Nitrosodimethylamine	62759	6.5	79	0.007	650.00	7900	LUTV is 650 times more conservative than the No Effect RBSL	LUTV is 7900 times more conservative than the Low Effect RBSL
	Pentachlorophenol	87865	2.8	10	0.17	16.47	59	LUTV is 16 times more conservative than the No Effect RBSL	LUTV is 59 times more conservative than the Low Effect RBSL
	Butyl benzyl phthalate	85687	90	260	0.1	900	2600	LUTV is 900 times more conservative than the No Effect RBSL	LUTV is 2600 times more conservative than the Low Effect RBSL
	bis(2-Ethylhexyl) phthalate	117817	0.32	65	0.061	5.25	1066	LUTV is 5.2 times more conservative than the No Effect RBSL	LUTV is 1100 times more conservative than the Low Effect RBSL
	Di-n-octyl phthalate	117817		130		481.5			LUTV is 4800 times more conservative than the Low Effect RBSL
-	Phenol	108952	13 5.1	51	0.027	481.5 30.0	4815 300	LUTV is 480 times more conservative than the No Effect RBSL	LUTV is 4800 times more conservative than the Low Effect RBSL
	Di-n-butyl phthalate	84742	0.11			4.07		LUTV is 30 times more conservative than the No Effect RBSL LUTV is 4.1 times more conservative than the No Effect RBSL	
		65850	4.5	1.1 45	0.027	4.07 6.82	41		LUTV is 41 times more conservative than the Low Effect RBSL
	Benzoic acid				0.66		68 1560	LUTV is 6.8 times more conservative than the No Effect RBSL	LUTV is 68 times more conservative than the Low Effect RBSL
Cs	Vinyl chloride	75014	0.78	7.8	0.005	156.00	1560	LUTV is 160 times more conservative than the No Effect RBSL	LUTV is 1600 times more conservative than the Low Effect RBSL
Cs	Tetrachloroethene Trichloroethene	127184 79016	2.2	11 18	0.005	440.00 360.00	2200	LUTV is 440 times more conservative than the No Effect RBSL	LUTV is 2200 times more conservative than the Low Effect RBSL
			I I X	I (X	0.005	300.00	3600	LUTV is 360 times more conservative than the No Effect RBSL	LUTV is 3600 times more conservative than the Low Effect RBSL

Ecological Risk-Management Summary

TABLE 3-3 Comparison of the Ecological Protectiveness of the Risk-based Cleanup Levels to the Background Cleanup Levels Comparative Analysis of the Background and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

			Ecological R	BSL (mg/kg) ^ª	Lookup Table	Ratio of Cleanup Levels (RBSL/LUTV)		Ecological Risk-Ma	iage
Chemical Class	Analyte	CAS #	No Effect	Low Effect	Value (LUTV) ^b (mg/kg)	No Effect	Low Effect	No Effect	
VOCs	Ethylbenzene	100414	79	240	0.005	15800.00	48000	LUTV is 16000 times more conservative than the No Effect RBSL	LU
VOCs	Hexachlorobutadiene	87683	0.022	0.11	0.005	4.40	22	LUTV is 4.4 times more conservative than the No Effect RBSL	LL
VOCs	cis-1,2-Dichloroethene	156592	210	220	0.005	42000.00	44000	LUTV is 42000 times more conservative than the No Effect RBSL	LU
VOCs	2-Hexanone	591786	23	170	0.01	2300	17000	LUTV is 2300 times more conservative than the No Effect RBSL	LU
VOCs	Toluene	108883	59	590	0.005	11800	118000	LUTV is 12000 times more conservative than the No Effect RBSL	LU
VOCs	Acetone	67641	46	230	0.02	2300	11500	LUTV is 2300 times more conservative than the No Effect RBSL	LU
Dioxins	2,3,7,8-TCDD TEQ	DIOXTEQM	0.0000005	0.000005	0.000000912	0.55	5	LUTV is 1.8 times less conservative than the No Effect RBSL	LU

Notes:

-' = None established/not applicable.

DDE = Dichlorodiphenyldichloroetheylene

DDT = Dichlorodiphenyldichloroetheylene

EPC = Exposure point concentration

HQ = Hazard quotient

mg/kg = Milligrams per kilogram

PAH = Polycyclic aromatic hydrocarbon

PCB = Polychlorinated biphenyl

PCDD/PCDF = Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans

Ratio = Lowest RBSL divided by the EPC

RBSL = Risk-based screening level

RME = Reasonable maximum exposure

TCDD: 2,3,7,8-Tetrachlorodibenzo-p-dioxin

TEQ = Toxic equivalency

a : MWH, 2011 (See Table 3-1)

^b Look-up Table values subject to change (See Table 1-1)

agement Summary

Low Effect
LUTV is 48000 times more conservative than the Low Effect RBSL
LUTV is 22 times more conservative than the Low Effect RBSL
LUTV is 44000 times more conservative than the Low Effect RBSL
LUTV is 17000 times more conservative than the Low Effect RBSL
LUTV is 120000 times more conservative than the Low Effect RBSL
LUTV is 12000 times more conservative than the Low Effect RBSL
LUTV is 5.5 times more conservative than the Low Effect RBSL

TABLE 3-4 Ecological Risk Evaluation and Chemical of Ecological Concern Identification for Soils from 0- 6 feet bgs - Risk-Based Cleanup Scenario Comparative Analysis of the Backgorund and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

					tistics (mg/kg)	De demond	RBSLs	(mg/kg)	Maximum	-Based HQ	Average-	Based HQ		
Analyte	Detects	Sample Number	FOD	Maximum of Detects	Average ^b	Background Value ^c	No Effect Level	Low Effect Level	No Effect	Low Effect	No Effect	Low Effect	COEC?	
1-Methyl naphthalene	11	397	2.8%	0.019	0.017		52	260	0.0004	0.0001	3.3E-04	6.5E-05	No	HQs less than one, FOD less thar
2-Hexanone ^a	0	448	0.0%				23	170					No	Not detected
2-Methylnaphthalene	19	449	4.2%	27.4	0.13		53	260	0.52	0.11	0.002	5.0E-04	No	HQs less than one, FOD less than
4,4'-DDE	3	36	8.3%	0.0037	0.038	0.00647	0.0041	0.28	0.90	0.01	9.3	0.14	No	HQs less than one, consistent wi
4,4'-DDT	3	36	8.3%	0.0037	0.038	0.009655	0.0035	0.58	1.06	0.01	11	0.07	No	Consistent with background valu
Acenaphthene	25	464	5.4%	2.24	0.039	0.0018	3.1	31	0.72	0.07	0.01	0.001	No	HQs less than one
Acenaphthylene	19	463	4.1%	0.338	0.033		0.33	3.3	1.02	0.10	0.10	0.010	No	Low mangitude of exceedance; lo
Acetone	88	508	17.3%	3.4	0.72		46	230	0.07	0.01	0.02	0.003	No	HQs less than one
Anthracene	34	464	7.3%	1.46	0.036		2.8	28	0.52	0.05	0.01	0.001	No	HQs less than one
Antimony	144	347	41.5%	25.3	1.3	0.738	0.042	2	602	12.7	31	0.65	Yes	65% of detections exceed backg
Aroclor 1254	34	190	17.9%	8.09	0.078		0.039	0.39	207	20.7	2.0	0.20	Yes	Cumulative risk (sum of PCB HQ
Aroclor 1260	21	190	11.1%	49	0.28		0.025	0.25	1960	196	11	1.1	Yes	Average greater than low effect
Total Aroclor Risk		190							2167	217	13	1.3	Yes	Because cumulative hazard inde
Arsenic	345	359	96.1%	33.5	5.0	39.7	2.1	31	16	1.08	2.4	0.16	No	Consistent with background
Benzo(a)pyrene	59	464	12.7%	1.7	0.040		3.1	190	0.5	0.01	0.01	2.1E-04	No	HQs less than one
Benzo(ghi)perylene	60	464	12.9%	1.8	0.039	0.001507	4.1	220	0.44	0.01	0.010	1.8E-04	No	HQs less than one
Benzoic acid	9	141	6.4%	0.708	0.41		4.5	45	0.16	0.02	0.09	0.009	No	HQs less than one
Bis(2-ethylhexyl) phthalate	56	425	13.2%	19	0.12	0.0398	0.32	65	59.4	0.29	0.38	0.002	No	Low effect HQs less than one
Butyl benzyl phthalate	20	399	5.0%	0.0977	0.078	0.0667	90	260	0.0011	0.0004	8.7E-04	3.0E-04	No	HQs less than one
Cadmium	320	363	88.2%	244	0.95	0.579	0.019	0.81	12842	301	50	1.2	Yes	25/363 exceed background, ave
Chlordane (Technical)	1	28	3.6%	0.0029	0.0035		1.1	5.6	0.0026	0.0005	0.003	6.3E-04	No	HQs less than one, FOD less than
Chromium VI	1	37	2.7%	1.06	0.64		7.3	30	0.15	0.04	0.09	0.02	No	HQs less than one, FOD less than
cis-1,2-Dichloroethene	21	508	4.1%	0.51	0.076		210	220	0.0024	0.0023	3.6E-04	3.5E-04	No	HQs less than one, FOD less than
Copper	365	368	99.2%	3500	40	102	1.1	24	3182	146	36	1.7	No	Less than 3% exceed background
Dieldrin	4	36	11.1%	0.0041	0.037	0.000166	0.013	0.58	0.32	0.01	2.8	0.06	No	HQs less than one
Di-n-butyl phthalate	35	425	8.2%	0.25	0.077		0.11	1.1	2.27	0.23	0.70	0.07	No	Low mangitude of exceedance; le
Di-n-octyl phthalate	5	399	1.3%	0.0443	0.078		13	130	0.0034	0.0003	0.006	6.0E-04	No	HQs less than one, FOD less than
2,3,7,8-TCDD TEQ	134	148	90.5%	0.000075	0.0000027	3.58E-08	0.0000005	0.000005	150	15.0	5.4	0.54	Yes	Over 10% exceed low effect leve
Ethylbenzene	10	547	1.8%	1.2	0.069		79	240	0.02	0.01	8.7E-04	2.9E-04	No	HQs less than one, FOD less than
Fluoranthene	70	464	15.1%	1.9	0.042	0.003455	54	880	0.04	0.002	7.8E-04	4.8E-05	No	HQs less than one
Fluorene	19	464	4.1%	2.22	0.040		1.9	19	1.17	0.12	0.02	0.002	No	Low mangitude of exceedance; le
Formaldehyde	19	49	38.8%	28000	4410		43000	380000	0.65	0.07	0.10	0.01	No	HQs less than one
Hexachlorobutadiene ^a	0	465	0.0%				0.02	0.11					No	Not detected
Lead	369	372	99.2%	1360	15	42.15	0.018	39	75556	34.9	833	0.38	No	Less than 2% of concentrations e
Mercury	297	388	76.5%	20.1	0.081	0.0411	0.87	1.7	23.10	11.8	0.09	0.05	No	Only 1 of 388 samples exceed low
Methylene chloride	54	511	10.6%	0.52	0.29		27	230	0.02	0.002	0.01	0.001	No	HQs less than one
Naphthalene	29	485	6.0%	3.96	0.049		26	130	0.15	0.03	0.002	3.8E-04	No	HQs less than one
n-Nitrosodimethylamine	10	369	2.7%	0.00098	0.00056		6.5	79	0.00015	0.00001	8.6E-05	7.1E-06	No	HQs less than one, FOD less than
Pentachlorophenol ^a	0	141	0.0%										No	Not detected
Perchlorate ^ª	0	2	0.0%										No	Not detected
Phenanthrene	66	464	14.2%	5.99	0.062	0.002635	1.3	13	4.61	0.46	0.05	0.005	No	Low effect HQs less than one
Phenol	14	141	9.9%	5.36	0.37		5.1	51	1.05	0.11	0.07	0.007	No	Low mangitude of exceedance; le
Pyrene	88	464	19.0%	5.5	0.054	0.00376	1.2	73	4.58	0.08	0.05	7.4E-04	No	Low effect HQs less than one
Silver	205	372	55.1%	328	2.1	0.138	0.99	29	331	11.3	2.1	0.07	No	Less than 1% exceed low effect le

Rationale
an 5 percent
an 5 percent
with background value
Ilue, low effect HQs less than one
ince, for effect has less than one
; low effect HQ less than one, FOD less than 5 percent
, tow check the reas than one, i ob reas than 5 percent
kground and 23% exceed the low effect level
IQs) greater than one based on low effect HQ
ct value dex exceeds one, both aroclors are identified as COECs.
verage exceeds low effect level; potential for hot spots
an 5 percent
an 5 percent
an 5 percent
nd value (9/368)
; low effect HQs less than one
an 5 percent
vel; potential for hot spots
an 5 percent
; low effect HQs less than one, FOD less than 5 percent
s exceed background (6/372)
low effect level; average concentration less than no effect level.
an 5 percent
; low effect HQs less than one
t level (3/372).

TABLE 3-4 Ecological Risk Evaluation and Chemical of Ecological Concern Identification for Soils from 0- 6 feet bgs - Risk-Based Cleanup Scenario

Comparative Analysis of the Backgorund and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California

1				Summary Statistics (mg/kg)			RBSLs (mg/kg)		Maximum-Based HQ		Average-Based HQ		ł	
Analyte	Detects	Sample Number	FOD	Maximum of Detects	Average ^b	Background Value ^c	No Effect Level	Low Effect Level	No Effect	Low Effect	No Effect	Low Effect	COEC?	
Tetrachloroethene	8	518	1.5%	2.13	0.073		2.2	11	0.97	0.19	0.03	0.007	No	HQs less than one, FOD less than 5 per
Toluene	25	547	4.6%	0.031	0.067		59	590	0.00	0.00	0.001	1.1E-04	No	HQs less than one, FOD less than 5 per
Trichloroethene	51	521	9.8%	140	0.57		1.8	18	77.8	7.78	0.32	0.03	No	Less than 0.6% exceed the low effect I
Vinyl chloride	2	518	0.4%	0.008	0.14		0.78	7.8	0.01	0.001	0.18	0.02	No	HQs less than one, FOD less than 5 per
Zinc	356	360	98.9%	5050	78	185	19	320	266	15.8	4.1	0.24	No	Less than 2% exceed background value
Notes: DDE = Dichlorodiphenyldichloroe DDT = Dichlorodiphenyldichloroe COEC = Chemical of ecological co FOD = Frequency of detection	theylene													

HQ = Hazard quotient

 $\Pi Q = \Pi a z a r u quotient$

mg/kg = Milligram per kilogram

μg/kg = Micrograms per kilogram TCDD = 2,3,7,8-Tetrachlorodibenzo-p-dioxin

TEQ = Toxic equivalency

TEQ = TOXIC equivalency

Analytes in bold are identified as chemicals of ecological concern

^a Some analytes were identified as analytes for remediation under the background scenario but were either not detected on NASA property or in soils from 0 to 6 feet bgs. However, these analytes have been retained here for consistency.

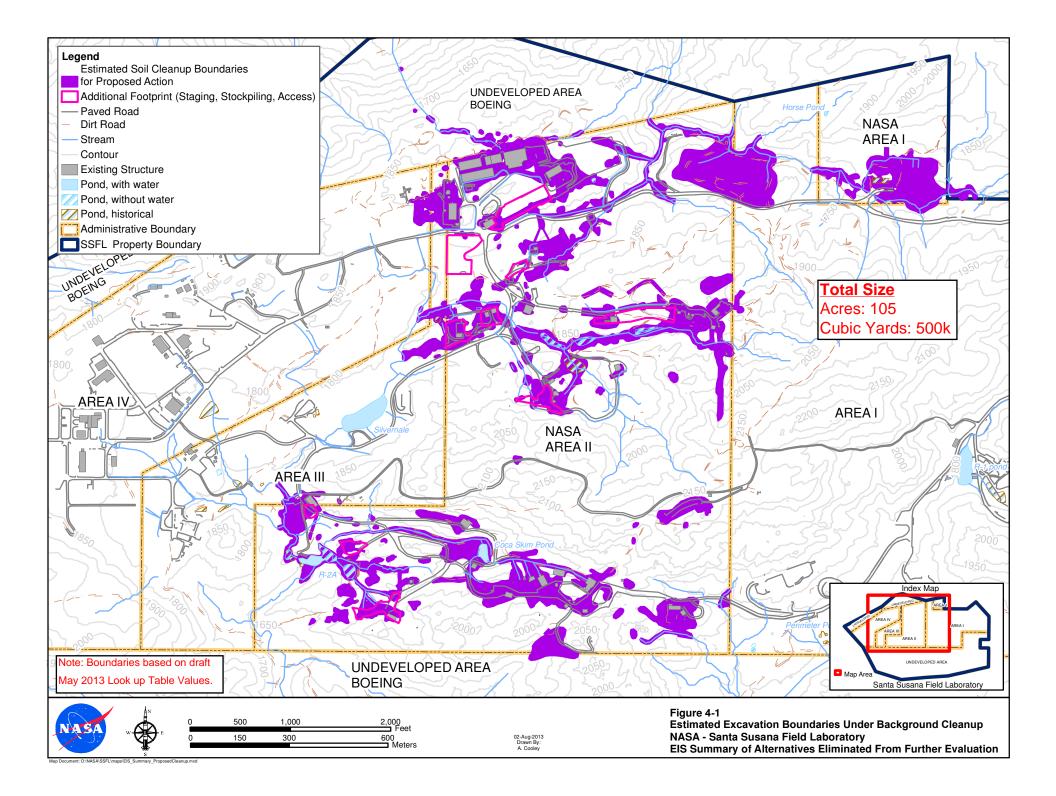
^b Average calculated using 1/2 the reporting limit of analytes in soils from 0 to 6 feet bgs.

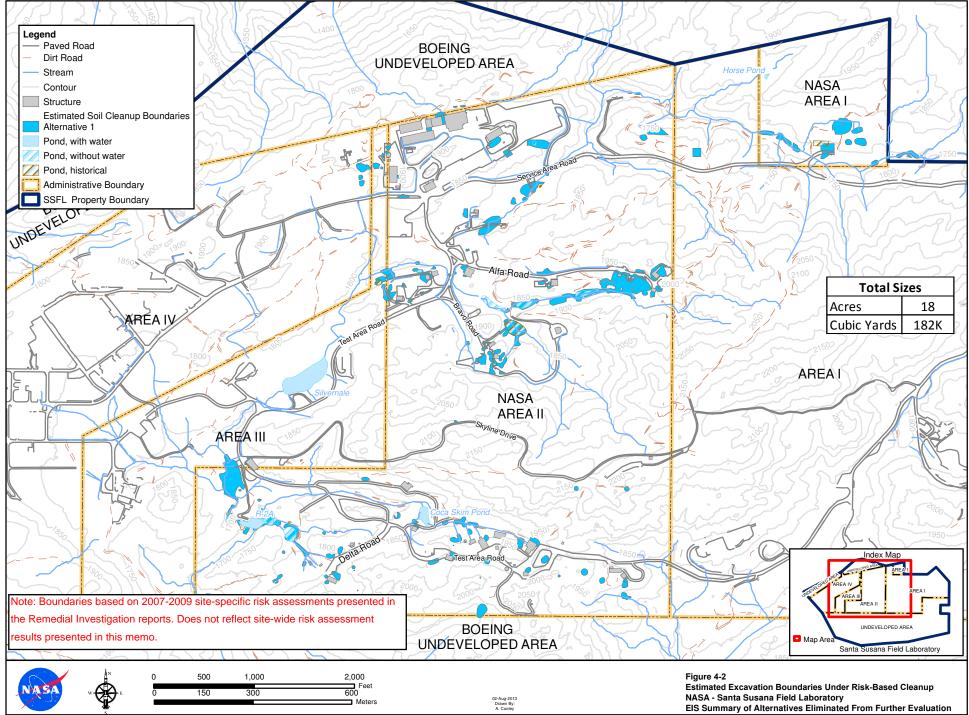
^c Background values (DTSC, 2013).

Rationale
than 5 percent
than 5 percent
ow effect level (3/521); average concentration less than no effect level.
than 5 percent
ound value (6/360).

TABLE 3-5

Risk Summary for Ecological Soil COCs - Background Cleanup Scenario vs Risk-based Cleanup Scenario


Comparative Analysis of the Backgorund and Risk-Based Cleanup Scenarios, SSFL, Ventura County, California


Comparative Analysis of the Backgroun	Preliminary Cleanu	p Values (mg/kg)	Residual			
		Risk-Based (Low Effect			Ratio of Risk-Based HQ to	
Analyte	Background (LUTV) ^a	Level)	Background Scenario	Risk-Based Scenario	Background HQ	
Antimony	0.86	2	0.43	1	2.3	
Aroclor 1254	0.17	0.39	0.44	1	2.3	
Aroclor 1260	0.17	0.25	0.68	1	1.5	
Cadmium	0.7	0.81	0.86	1	1.2	
2,3,7,8-TCDD TEQ	0.00000912	0.000005	0.18	1	5.5	
Notes: HQ = Hazard quotient						
LUTV = Lookup table values						
mg/kg = Milligram per kilogram						
TCDD = 2,3,7,8-Tetrachlorodibenzo-p-dic	oxin					
TEQ = Toxic equivalency						
^a Look-up Table Value subject to change. values were available.	. DTSC, 2013 (see Table 1-1)	. Representative of backgr	round threshold values or r	eporting limits when no ba	ckground	

This page intentionally left blank.

Figures

This page intentionally left blank.

ap Document: O:INASA\SSFL\maps\EIS_2011\EIS_Summary_CleanupAlternative1_SDE.mxd